Trying to understand the terms given by $int_0^1 t^m sin pi t : dt$
$begingroup$
Reading this paper (page $3$, theorem $2$) I got confused.
First is defined the integral $I_n$ as:
begin{align}
I_n = (-1)^n frac{ pi^{2n} }{(2n)!} int_0^1 t^{2n}(1-t)^{2n} sin pi t : dt .
end{align}
Now, $I_n$ consists of terms of the shape:
begin{align}
int_0^1 t^{m} sin pi t : dt , : m leq 2n.
end{align}
Integrate by parts the integral above:
begin{align}
int_0^1 t^{m} sin pi t : dt = frac{1}{pi} - frac{m(m-1)}{pi^2}
int_0^1 t^{m-2} sin pi t : dt.
end{align}
The following conclusion I don't understand: "Hence $I_n = pi^{-1}A_n(pi^{-2})
$, where $A_n$ is an $(n-1)$st degree polynomial with integral coefficients."
I understand the above as being, $I_n = pi^{-1}( a_{n-1}pi^{-2(n-1)} + a_{n-2}pi^{-2(n-2)} + cdots + a_0).$ But this is wrong.
Can someone give a detailed explanation, please?
integration proof-explanation
$endgroup$
add a comment |
$begingroup$
Reading this paper (page $3$, theorem $2$) I got confused.
First is defined the integral $I_n$ as:
begin{align}
I_n = (-1)^n frac{ pi^{2n} }{(2n)!} int_0^1 t^{2n}(1-t)^{2n} sin pi t : dt .
end{align}
Now, $I_n$ consists of terms of the shape:
begin{align}
int_0^1 t^{m} sin pi t : dt , : m leq 2n.
end{align}
Integrate by parts the integral above:
begin{align}
int_0^1 t^{m} sin pi t : dt = frac{1}{pi} - frac{m(m-1)}{pi^2}
int_0^1 t^{m-2} sin pi t : dt.
end{align}
The following conclusion I don't understand: "Hence $I_n = pi^{-1}A_n(pi^{-2})
$, where $A_n$ is an $(n-1)$st degree polynomial with integral coefficients."
I understand the above as being, $I_n = pi^{-1}( a_{n-1}pi^{-2(n-1)} + a_{n-2}pi^{-2(n-2)} + cdots + a_0).$ But this is wrong.
Can someone give a detailed explanation, please?
integration proof-explanation
$endgroup$
add a comment |
$begingroup$
Reading this paper (page $3$, theorem $2$) I got confused.
First is defined the integral $I_n$ as:
begin{align}
I_n = (-1)^n frac{ pi^{2n} }{(2n)!} int_0^1 t^{2n}(1-t)^{2n} sin pi t : dt .
end{align}
Now, $I_n$ consists of terms of the shape:
begin{align}
int_0^1 t^{m} sin pi t : dt , : m leq 2n.
end{align}
Integrate by parts the integral above:
begin{align}
int_0^1 t^{m} sin pi t : dt = frac{1}{pi} - frac{m(m-1)}{pi^2}
int_0^1 t^{m-2} sin pi t : dt.
end{align}
The following conclusion I don't understand: "Hence $I_n = pi^{-1}A_n(pi^{-2})
$, where $A_n$ is an $(n-1)$st degree polynomial with integral coefficients."
I understand the above as being, $I_n = pi^{-1}( a_{n-1}pi^{-2(n-1)} + a_{n-2}pi^{-2(n-2)} + cdots + a_0).$ But this is wrong.
Can someone give a detailed explanation, please?
integration proof-explanation
$endgroup$
Reading this paper (page $3$, theorem $2$) I got confused.
First is defined the integral $I_n$ as:
begin{align}
I_n = (-1)^n frac{ pi^{2n} }{(2n)!} int_0^1 t^{2n}(1-t)^{2n} sin pi t : dt .
end{align}
Now, $I_n$ consists of terms of the shape:
begin{align}
int_0^1 t^{m} sin pi t : dt , : m leq 2n.
end{align}
Integrate by parts the integral above:
begin{align}
int_0^1 t^{m} sin pi t : dt = frac{1}{pi} - frac{m(m-1)}{pi^2}
int_0^1 t^{m-2} sin pi t : dt.
end{align}
The following conclusion I don't understand: "Hence $I_n = pi^{-1}A_n(pi^{-2})
$, where $A_n$ is an $(n-1)$st degree polynomial with integral coefficients."
I understand the above as being, $I_n = pi^{-1}( a_{n-1}pi^{-2(n-1)} + a_{n-2}pi^{-2(n-2)} + cdots + a_0).$ But this is wrong.
Can someone give a detailed explanation, please?
integration proof-explanation
integration proof-explanation
edited Dec 18 '18 at 4:19
Pinteco
asked Dec 18 '18 at 1:08
PintecoPinteco
765313
765313
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I think that there is typo in the paper; it should be "Hence $I_n = pi^{-1}A_n(pi^{-2})$ where $A_n$ is an $color{red}{n}$ degree polynomial with integral coefficients."
I prefered to write it as
$$I_n=frac 1 pi sum_{k=0}^n frac {a_k} {pi^{2k}}$$
Using what is given and computing, we have
$$left(
begin{array}{cc}
n & pi I_n \
1 & 2-frac{24}{pi ^2} \
2 & 2-frac{360}{pi ^2} +frac{3360}{pi ^4}\
3 & 2-frac{1680}{pi ^2}+frac{151200}{pi ^4}-frac{1330560}{pi ^6} \
4 & 2-frac{5040}{pi ^2}+frac{1663200}{pi
^4}-frac{121080960}{pi ^6}+frac{1037836800}{pi ^8}\
5 & 2-frac{11880}{pi ^2}+frac{10090080}{pi ^4}-frac{2421619200}{pi ^6}+frac{158789030400}{pi
^8}-frac{1340885145600}{pi ^{10}} \
6 &2 -frac{24024}{pi ^2}+frac{43243200}{pi ^4}-frac{24700515840}{pi^6}+frac{5028319296000}{pi ^8}-frac{309744468633600}{pi
^{10}}+frac{2590590101299200}{pi ^{12}}
end{array}
right)$$
In fact, given by a CAS, there is a general expression in terms of hypergeometric function
$$I_n=(-1)^nfrac{ pi ^{2 n+frac{3}{2}} }{2^{4 n+2},Gamma left(2 n+frac{3}{2}right)},
_2F_3left(n+1,n+frac{3}{2};frac{3}{2},2 n+frac{3}{2},2 n+2;-frac{pi
^2}{4}right)$$
$endgroup$
$begingroup$
My question was more about how seeing the integral after integrating by parts helps you conclude that $I_n=frac 1 pi sum_{k=0}^n frac {a_k} {pi^{2k}}$. Thanks for answering though.
$endgroup$
– Pinteco
Dec 19 '18 at 15:51
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044670%2ftrying-to-understand-the-terms-given-by-int-01-tm-sin-pi-t-dt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I think that there is typo in the paper; it should be "Hence $I_n = pi^{-1}A_n(pi^{-2})$ where $A_n$ is an $color{red}{n}$ degree polynomial with integral coefficients."
I prefered to write it as
$$I_n=frac 1 pi sum_{k=0}^n frac {a_k} {pi^{2k}}$$
Using what is given and computing, we have
$$left(
begin{array}{cc}
n & pi I_n \
1 & 2-frac{24}{pi ^2} \
2 & 2-frac{360}{pi ^2} +frac{3360}{pi ^4}\
3 & 2-frac{1680}{pi ^2}+frac{151200}{pi ^4}-frac{1330560}{pi ^6} \
4 & 2-frac{5040}{pi ^2}+frac{1663200}{pi
^4}-frac{121080960}{pi ^6}+frac{1037836800}{pi ^8}\
5 & 2-frac{11880}{pi ^2}+frac{10090080}{pi ^4}-frac{2421619200}{pi ^6}+frac{158789030400}{pi
^8}-frac{1340885145600}{pi ^{10}} \
6 &2 -frac{24024}{pi ^2}+frac{43243200}{pi ^4}-frac{24700515840}{pi^6}+frac{5028319296000}{pi ^8}-frac{309744468633600}{pi
^{10}}+frac{2590590101299200}{pi ^{12}}
end{array}
right)$$
In fact, given by a CAS, there is a general expression in terms of hypergeometric function
$$I_n=(-1)^nfrac{ pi ^{2 n+frac{3}{2}} }{2^{4 n+2},Gamma left(2 n+frac{3}{2}right)},
_2F_3left(n+1,n+frac{3}{2};frac{3}{2},2 n+frac{3}{2},2 n+2;-frac{pi
^2}{4}right)$$
$endgroup$
$begingroup$
My question was more about how seeing the integral after integrating by parts helps you conclude that $I_n=frac 1 pi sum_{k=0}^n frac {a_k} {pi^{2k}}$. Thanks for answering though.
$endgroup$
– Pinteco
Dec 19 '18 at 15:51
add a comment |
$begingroup$
I think that there is typo in the paper; it should be "Hence $I_n = pi^{-1}A_n(pi^{-2})$ where $A_n$ is an $color{red}{n}$ degree polynomial with integral coefficients."
I prefered to write it as
$$I_n=frac 1 pi sum_{k=0}^n frac {a_k} {pi^{2k}}$$
Using what is given and computing, we have
$$left(
begin{array}{cc}
n & pi I_n \
1 & 2-frac{24}{pi ^2} \
2 & 2-frac{360}{pi ^2} +frac{3360}{pi ^4}\
3 & 2-frac{1680}{pi ^2}+frac{151200}{pi ^4}-frac{1330560}{pi ^6} \
4 & 2-frac{5040}{pi ^2}+frac{1663200}{pi
^4}-frac{121080960}{pi ^6}+frac{1037836800}{pi ^8}\
5 & 2-frac{11880}{pi ^2}+frac{10090080}{pi ^4}-frac{2421619200}{pi ^6}+frac{158789030400}{pi
^8}-frac{1340885145600}{pi ^{10}} \
6 &2 -frac{24024}{pi ^2}+frac{43243200}{pi ^4}-frac{24700515840}{pi^6}+frac{5028319296000}{pi ^8}-frac{309744468633600}{pi
^{10}}+frac{2590590101299200}{pi ^{12}}
end{array}
right)$$
In fact, given by a CAS, there is a general expression in terms of hypergeometric function
$$I_n=(-1)^nfrac{ pi ^{2 n+frac{3}{2}} }{2^{4 n+2},Gamma left(2 n+frac{3}{2}right)},
_2F_3left(n+1,n+frac{3}{2};frac{3}{2},2 n+frac{3}{2},2 n+2;-frac{pi
^2}{4}right)$$
$endgroup$
$begingroup$
My question was more about how seeing the integral after integrating by parts helps you conclude that $I_n=frac 1 pi sum_{k=0}^n frac {a_k} {pi^{2k}}$. Thanks for answering though.
$endgroup$
– Pinteco
Dec 19 '18 at 15:51
add a comment |
$begingroup$
I think that there is typo in the paper; it should be "Hence $I_n = pi^{-1}A_n(pi^{-2})$ where $A_n$ is an $color{red}{n}$ degree polynomial with integral coefficients."
I prefered to write it as
$$I_n=frac 1 pi sum_{k=0}^n frac {a_k} {pi^{2k}}$$
Using what is given and computing, we have
$$left(
begin{array}{cc}
n & pi I_n \
1 & 2-frac{24}{pi ^2} \
2 & 2-frac{360}{pi ^2} +frac{3360}{pi ^4}\
3 & 2-frac{1680}{pi ^2}+frac{151200}{pi ^4}-frac{1330560}{pi ^6} \
4 & 2-frac{5040}{pi ^2}+frac{1663200}{pi
^4}-frac{121080960}{pi ^6}+frac{1037836800}{pi ^8}\
5 & 2-frac{11880}{pi ^2}+frac{10090080}{pi ^4}-frac{2421619200}{pi ^6}+frac{158789030400}{pi
^8}-frac{1340885145600}{pi ^{10}} \
6 &2 -frac{24024}{pi ^2}+frac{43243200}{pi ^4}-frac{24700515840}{pi^6}+frac{5028319296000}{pi ^8}-frac{309744468633600}{pi
^{10}}+frac{2590590101299200}{pi ^{12}}
end{array}
right)$$
In fact, given by a CAS, there is a general expression in terms of hypergeometric function
$$I_n=(-1)^nfrac{ pi ^{2 n+frac{3}{2}} }{2^{4 n+2},Gamma left(2 n+frac{3}{2}right)},
_2F_3left(n+1,n+frac{3}{2};frac{3}{2},2 n+frac{3}{2},2 n+2;-frac{pi
^2}{4}right)$$
$endgroup$
I think that there is typo in the paper; it should be "Hence $I_n = pi^{-1}A_n(pi^{-2})$ where $A_n$ is an $color{red}{n}$ degree polynomial with integral coefficients."
I prefered to write it as
$$I_n=frac 1 pi sum_{k=0}^n frac {a_k} {pi^{2k}}$$
Using what is given and computing, we have
$$left(
begin{array}{cc}
n & pi I_n \
1 & 2-frac{24}{pi ^2} \
2 & 2-frac{360}{pi ^2} +frac{3360}{pi ^4}\
3 & 2-frac{1680}{pi ^2}+frac{151200}{pi ^4}-frac{1330560}{pi ^6} \
4 & 2-frac{5040}{pi ^2}+frac{1663200}{pi
^4}-frac{121080960}{pi ^6}+frac{1037836800}{pi ^8}\
5 & 2-frac{11880}{pi ^2}+frac{10090080}{pi ^4}-frac{2421619200}{pi ^6}+frac{158789030400}{pi
^8}-frac{1340885145600}{pi ^{10}} \
6 &2 -frac{24024}{pi ^2}+frac{43243200}{pi ^4}-frac{24700515840}{pi^6}+frac{5028319296000}{pi ^8}-frac{309744468633600}{pi
^{10}}+frac{2590590101299200}{pi ^{12}}
end{array}
right)$$
In fact, given by a CAS, there is a general expression in terms of hypergeometric function
$$I_n=(-1)^nfrac{ pi ^{2 n+frac{3}{2}} }{2^{4 n+2},Gamma left(2 n+frac{3}{2}right)},
_2F_3left(n+1,n+frac{3}{2};frac{3}{2},2 n+frac{3}{2},2 n+2;-frac{pi
^2}{4}right)$$
answered Dec 18 '18 at 5:40
Claude LeiboviciClaude Leibovici
124k1158135
124k1158135
$begingroup$
My question was more about how seeing the integral after integrating by parts helps you conclude that $I_n=frac 1 pi sum_{k=0}^n frac {a_k} {pi^{2k}}$. Thanks for answering though.
$endgroup$
– Pinteco
Dec 19 '18 at 15:51
add a comment |
$begingroup$
My question was more about how seeing the integral after integrating by parts helps you conclude that $I_n=frac 1 pi sum_{k=0}^n frac {a_k} {pi^{2k}}$. Thanks for answering though.
$endgroup$
– Pinteco
Dec 19 '18 at 15:51
$begingroup$
My question was more about how seeing the integral after integrating by parts helps you conclude that $I_n=frac 1 pi sum_{k=0}^n frac {a_k} {pi^{2k}}$. Thanks for answering though.
$endgroup$
– Pinteco
Dec 19 '18 at 15:51
$begingroup$
My question was more about how seeing the integral after integrating by parts helps you conclude that $I_n=frac 1 pi sum_{k=0}^n frac {a_k} {pi^{2k}}$. Thanks for answering though.
$endgroup$
– Pinteco
Dec 19 '18 at 15:51
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044670%2ftrying-to-understand-the-terms-given-by-int-01-tm-sin-pi-t-dt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown