Trying to understand the terms given by $int_0^1 t^m sin pi t : dt$












1












$begingroup$


Reading this paper (page $3$, theorem $2$) I got confused.



First is defined the integral $I_n$ as:



begin{align}
I_n = (-1)^n frac{ pi^{2n} }{(2n)!} int_0^1 t^{2n}(1-t)^{2n} sin pi t : dt .
end{align}



Now, $I_n$ consists of terms of the shape:



begin{align}
int_0^1 t^{m} sin pi t : dt , : m leq 2n.
end{align}



Integrate by parts the integral above:



begin{align}
int_0^1 t^{m} sin pi t : dt = frac{1}{pi} - frac{m(m-1)}{pi^2}
int_0^1 t^{m-2} sin pi t : dt.
end{align}



The following conclusion I don't understand: "Hence $I_n = pi^{-1}A_n(pi^{-2})
$
, where $A_n$ is an $(n-1)$st degree polynomial with integral coefficients."



I understand the above as being, $I_n = pi^{-1}( a_{n-1}pi^{-2(n-1)} + a_{n-2}pi^{-2(n-2)} + cdots + a_0).$ But this is wrong.



Can someone give a detailed explanation, please?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Reading this paper (page $3$, theorem $2$) I got confused.



    First is defined the integral $I_n$ as:



    begin{align}
    I_n = (-1)^n frac{ pi^{2n} }{(2n)!} int_0^1 t^{2n}(1-t)^{2n} sin pi t : dt .
    end{align}



    Now, $I_n$ consists of terms of the shape:



    begin{align}
    int_0^1 t^{m} sin pi t : dt , : m leq 2n.
    end{align}



    Integrate by parts the integral above:



    begin{align}
    int_0^1 t^{m} sin pi t : dt = frac{1}{pi} - frac{m(m-1)}{pi^2}
    int_0^1 t^{m-2} sin pi t : dt.
    end{align}



    The following conclusion I don't understand: "Hence $I_n = pi^{-1}A_n(pi^{-2})
    $
    , where $A_n$ is an $(n-1)$st degree polynomial with integral coefficients."



    I understand the above as being, $I_n = pi^{-1}( a_{n-1}pi^{-2(n-1)} + a_{n-2}pi^{-2(n-2)} + cdots + a_0).$ But this is wrong.



    Can someone give a detailed explanation, please?










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Reading this paper (page $3$, theorem $2$) I got confused.



      First is defined the integral $I_n$ as:



      begin{align}
      I_n = (-1)^n frac{ pi^{2n} }{(2n)!} int_0^1 t^{2n}(1-t)^{2n} sin pi t : dt .
      end{align}



      Now, $I_n$ consists of terms of the shape:



      begin{align}
      int_0^1 t^{m} sin pi t : dt , : m leq 2n.
      end{align}



      Integrate by parts the integral above:



      begin{align}
      int_0^1 t^{m} sin pi t : dt = frac{1}{pi} - frac{m(m-1)}{pi^2}
      int_0^1 t^{m-2} sin pi t : dt.
      end{align}



      The following conclusion I don't understand: "Hence $I_n = pi^{-1}A_n(pi^{-2})
      $
      , where $A_n$ is an $(n-1)$st degree polynomial with integral coefficients."



      I understand the above as being, $I_n = pi^{-1}( a_{n-1}pi^{-2(n-1)} + a_{n-2}pi^{-2(n-2)} + cdots + a_0).$ But this is wrong.



      Can someone give a detailed explanation, please?










      share|cite|improve this question











      $endgroup$




      Reading this paper (page $3$, theorem $2$) I got confused.



      First is defined the integral $I_n$ as:



      begin{align}
      I_n = (-1)^n frac{ pi^{2n} }{(2n)!} int_0^1 t^{2n}(1-t)^{2n} sin pi t : dt .
      end{align}



      Now, $I_n$ consists of terms of the shape:



      begin{align}
      int_0^1 t^{m} sin pi t : dt , : m leq 2n.
      end{align}



      Integrate by parts the integral above:



      begin{align}
      int_0^1 t^{m} sin pi t : dt = frac{1}{pi} - frac{m(m-1)}{pi^2}
      int_0^1 t^{m-2} sin pi t : dt.
      end{align}



      The following conclusion I don't understand: "Hence $I_n = pi^{-1}A_n(pi^{-2})
      $
      , where $A_n$ is an $(n-1)$st degree polynomial with integral coefficients."



      I understand the above as being, $I_n = pi^{-1}( a_{n-1}pi^{-2(n-1)} + a_{n-2}pi^{-2(n-2)} + cdots + a_0).$ But this is wrong.



      Can someone give a detailed explanation, please?







      integration proof-explanation






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 18 '18 at 4:19







      Pinteco

















      asked Dec 18 '18 at 1:08









      PintecoPinteco

      765313




      765313






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          I think that there is typo in the paper; it should be "Hence $I_n = pi^{-1}A_n(pi^{-2})$ where $A_n$ is an $color{red}{n}$ degree polynomial with integral coefficients."



          I prefered to write it as
          $$I_n=frac 1 pi sum_{k=0}^n frac {a_k} {pi^{2k}}$$



          Using what is given and computing, we have
          $$left(
          begin{array}{cc}
          n & pi I_n \
          1 & 2-frac{24}{pi ^2} \
          2 & 2-frac{360}{pi ^2} +frac{3360}{pi ^4}\
          3 & 2-frac{1680}{pi ^2}+frac{151200}{pi ^4}-frac{1330560}{pi ^6} \
          4 & 2-frac{5040}{pi ^2}+frac{1663200}{pi
          ^4}-frac{121080960}{pi ^6}+frac{1037836800}{pi ^8}\
          5 & 2-frac{11880}{pi ^2}+frac{10090080}{pi ^4}-frac{2421619200}{pi ^6}+frac{158789030400}{pi
          ^8}-frac{1340885145600}{pi ^{10}} \
          6 &2 -frac{24024}{pi ^2}+frac{43243200}{pi ^4}-frac{24700515840}{pi^6}+frac{5028319296000}{pi ^8}-frac{309744468633600}{pi
          ^{10}}+frac{2590590101299200}{pi ^{12}}
          end{array}
          right)$$



          In fact, given by a CAS, there is a general expression in terms of hypergeometric function
          $$I_n=(-1)^nfrac{ pi ^{2 n+frac{3}{2}} }{2^{4 n+2},Gamma left(2 n+frac{3}{2}right)},
          _2F_3left(n+1,n+frac{3}{2};frac{3}{2},2 n+frac{3}{2},2 n+2;-frac{pi
          ^2}{4}right)$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            My question was more about how seeing the integral after integrating by parts helps you conclude that $I_n=frac 1 pi sum_{k=0}^n frac {a_k} {pi^{2k}}$. Thanks for answering though.
            $endgroup$
            – Pinteco
            Dec 19 '18 at 15:51













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044670%2ftrying-to-understand-the-terms-given-by-int-01-tm-sin-pi-t-dt%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          I think that there is typo in the paper; it should be "Hence $I_n = pi^{-1}A_n(pi^{-2})$ where $A_n$ is an $color{red}{n}$ degree polynomial with integral coefficients."



          I prefered to write it as
          $$I_n=frac 1 pi sum_{k=0}^n frac {a_k} {pi^{2k}}$$



          Using what is given and computing, we have
          $$left(
          begin{array}{cc}
          n & pi I_n \
          1 & 2-frac{24}{pi ^2} \
          2 & 2-frac{360}{pi ^2} +frac{3360}{pi ^4}\
          3 & 2-frac{1680}{pi ^2}+frac{151200}{pi ^4}-frac{1330560}{pi ^6} \
          4 & 2-frac{5040}{pi ^2}+frac{1663200}{pi
          ^4}-frac{121080960}{pi ^6}+frac{1037836800}{pi ^8}\
          5 & 2-frac{11880}{pi ^2}+frac{10090080}{pi ^4}-frac{2421619200}{pi ^6}+frac{158789030400}{pi
          ^8}-frac{1340885145600}{pi ^{10}} \
          6 &2 -frac{24024}{pi ^2}+frac{43243200}{pi ^4}-frac{24700515840}{pi^6}+frac{5028319296000}{pi ^8}-frac{309744468633600}{pi
          ^{10}}+frac{2590590101299200}{pi ^{12}}
          end{array}
          right)$$



          In fact, given by a CAS, there is a general expression in terms of hypergeometric function
          $$I_n=(-1)^nfrac{ pi ^{2 n+frac{3}{2}} }{2^{4 n+2},Gamma left(2 n+frac{3}{2}right)},
          _2F_3left(n+1,n+frac{3}{2};frac{3}{2},2 n+frac{3}{2},2 n+2;-frac{pi
          ^2}{4}right)$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            My question was more about how seeing the integral after integrating by parts helps you conclude that $I_n=frac 1 pi sum_{k=0}^n frac {a_k} {pi^{2k}}$. Thanks for answering though.
            $endgroup$
            – Pinteco
            Dec 19 '18 at 15:51


















          0












          $begingroup$

          I think that there is typo in the paper; it should be "Hence $I_n = pi^{-1}A_n(pi^{-2})$ where $A_n$ is an $color{red}{n}$ degree polynomial with integral coefficients."



          I prefered to write it as
          $$I_n=frac 1 pi sum_{k=0}^n frac {a_k} {pi^{2k}}$$



          Using what is given and computing, we have
          $$left(
          begin{array}{cc}
          n & pi I_n \
          1 & 2-frac{24}{pi ^2} \
          2 & 2-frac{360}{pi ^2} +frac{3360}{pi ^4}\
          3 & 2-frac{1680}{pi ^2}+frac{151200}{pi ^4}-frac{1330560}{pi ^6} \
          4 & 2-frac{5040}{pi ^2}+frac{1663200}{pi
          ^4}-frac{121080960}{pi ^6}+frac{1037836800}{pi ^8}\
          5 & 2-frac{11880}{pi ^2}+frac{10090080}{pi ^4}-frac{2421619200}{pi ^6}+frac{158789030400}{pi
          ^8}-frac{1340885145600}{pi ^{10}} \
          6 &2 -frac{24024}{pi ^2}+frac{43243200}{pi ^4}-frac{24700515840}{pi^6}+frac{5028319296000}{pi ^8}-frac{309744468633600}{pi
          ^{10}}+frac{2590590101299200}{pi ^{12}}
          end{array}
          right)$$



          In fact, given by a CAS, there is a general expression in terms of hypergeometric function
          $$I_n=(-1)^nfrac{ pi ^{2 n+frac{3}{2}} }{2^{4 n+2},Gamma left(2 n+frac{3}{2}right)},
          _2F_3left(n+1,n+frac{3}{2};frac{3}{2},2 n+frac{3}{2},2 n+2;-frac{pi
          ^2}{4}right)$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            My question was more about how seeing the integral after integrating by parts helps you conclude that $I_n=frac 1 pi sum_{k=0}^n frac {a_k} {pi^{2k}}$. Thanks for answering though.
            $endgroup$
            – Pinteco
            Dec 19 '18 at 15:51
















          0












          0








          0





          $begingroup$

          I think that there is typo in the paper; it should be "Hence $I_n = pi^{-1}A_n(pi^{-2})$ where $A_n$ is an $color{red}{n}$ degree polynomial with integral coefficients."



          I prefered to write it as
          $$I_n=frac 1 pi sum_{k=0}^n frac {a_k} {pi^{2k}}$$



          Using what is given and computing, we have
          $$left(
          begin{array}{cc}
          n & pi I_n \
          1 & 2-frac{24}{pi ^2} \
          2 & 2-frac{360}{pi ^2} +frac{3360}{pi ^4}\
          3 & 2-frac{1680}{pi ^2}+frac{151200}{pi ^4}-frac{1330560}{pi ^6} \
          4 & 2-frac{5040}{pi ^2}+frac{1663200}{pi
          ^4}-frac{121080960}{pi ^6}+frac{1037836800}{pi ^8}\
          5 & 2-frac{11880}{pi ^2}+frac{10090080}{pi ^4}-frac{2421619200}{pi ^6}+frac{158789030400}{pi
          ^8}-frac{1340885145600}{pi ^{10}} \
          6 &2 -frac{24024}{pi ^2}+frac{43243200}{pi ^4}-frac{24700515840}{pi^6}+frac{5028319296000}{pi ^8}-frac{309744468633600}{pi
          ^{10}}+frac{2590590101299200}{pi ^{12}}
          end{array}
          right)$$



          In fact, given by a CAS, there is a general expression in terms of hypergeometric function
          $$I_n=(-1)^nfrac{ pi ^{2 n+frac{3}{2}} }{2^{4 n+2},Gamma left(2 n+frac{3}{2}right)},
          _2F_3left(n+1,n+frac{3}{2};frac{3}{2},2 n+frac{3}{2},2 n+2;-frac{pi
          ^2}{4}right)$$






          share|cite|improve this answer









          $endgroup$



          I think that there is typo in the paper; it should be "Hence $I_n = pi^{-1}A_n(pi^{-2})$ where $A_n$ is an $color{red}{n}$ degree polynomial with integral coefficients."



          I prefered to write it as
          $$I_n=frac 1 pi sum_{k=0}^n frac {a_k} {pi^{2k}}$$



          Using what is given and computing, we have
          $$left(
          begin{array}{cc}
          n & pi I_n \
          1 & 2-frac{24}{pi ^2} \
          2 & 2-frac{360}{pi ^2} +frac{3360}{pi ^4}\
          3 & 2-frac{1680}{pi ^2}+frac{151200}{pi ^4}-frac{1330560}{pi ^6} \
          4 & 2-frac{5040}{pi ^2}+frac{1663200}{pi
          ^4}-frac{121080960}{pi ^6}+frac{1037836800}{pi ^8}\
          5 & 2-frac{11880}{pi ^2}+frac{10090080}{pi ^4}-frac{2421619200}{pi ^6}+frac{158789030400}{pi
          ^8}-frac{1340885145600}{pi ^{10}} \
          6 &2 -frac{24024}{pi ^2}+frac{43243200}{pi ^4}-frac{24700515840}{pi^6}+frac{5028319296000}{pi ^8}-frac{309744468633600}{pi
          ^{10}}+frac{2590590101299200}{pi ^{12}}
          end{array}
          right)$$



          In fact, given by a CAS, there is a general expression in terms of hypergeometric function
          $$I_n=(-1)^nfrac{ pi ^{2 n+frac{3}{2}} }{2^{4 n+2},Gamma left(2 n+frac{3}{2}right)},
          _2F_3left(n+1,n+frac{3}{2};frac{3}{2},2 n+frac{3}{2},2 n+2;-frac{pi
          ^2}{4}right)$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 18 '18 at 5:40









          Claude LeiboviciClaude Leibovici

          124k1158135




          124k1158135












          • $begingroup$
            My question was more about how seeing the integral after integrating by parts helps you conclude that $I_n=frac 1 pi sum_{k=0}^n frac {a_k} {pi^{2k}}$. Thanks for answering though.
            $endgroup$
            – Pinteco
            Dec 19 '18 at 15:51




















          • $begingroup$
            My question was more about how seeing the integral after integrating by parts helps you conclude that $I_n=frac 1 pi sum_{k=0}^n frac {a_k} {pi^{2k}}$. Thanks for answering though.
            $endgroup$
            – Pinteco
            Dec 19 '18 at 15:51


















          $begingroup$
          My question was more about how seeing the integral after integrating by parts helps you conclude that $I_n=frac 1 pi sum_{k=0}^n frac {a_k} {pi^{2k}}$. Thanks for answering though.
          $endgroup$
          – Pinteco
          Dec 19 '18 at 15:51






          $begingroup$
          My question was more about how seeing the integral after integrating by parts helps you conclude that $I_n=frac 1 pi sum_{k=0}^n frac {a_k} {pi^{2k}}$. Thanks for answering though.
          $endgroup$
          – Pinteco
          Dec 19 '18 at 15:51




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3044670%2ftrying-to-understand-the-terms-given-by-int-01-tm-sin-pi-t-dt%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Plaza Victoria

          Puebla de Zaragoza

          Musa