Asymptotic formula for $sum_{nle x}frac 1n$
$begingroup$
Prove that $displaystyle sum_{nle x}frac 1n=log (x+2)+O(1)$.
We have, $displaystyle sum_{nle x}frac 1n=log x +gamma+O(1/x)$. Now if I can show that $log(x+2)-log x+O(1/x)=O(1)$ then I have done.
Now, $log(x+2)-log x+O(1/x)=log left(frac{x+2}{x}right)+O(1/x)=O(1/x).$
How can I prove this ?
complex-analysis number-theory analytic-number-theory
$endgroup$
add a comment |
$begingroup$
Prove that $displaystyle sum_{nle x}frac 1n=log (x+2)+O(1)$.
We have, $displaystyle sum_{nle x}frac 1n=log x +gamma+O(1/x)$. Now if I can show that $log(x+2)-log x+O(1/x)=O(1)$ then I have done.
Now, $log(x+2)-log x+O(1/x)=log left(frac{x+2}{x}right)+O(1/x)=O(1/x).$
How can I prove this ?
complex-analysis number-theory analytic-number-theory
$endgroup$
$begingroup$
I don't understand the thing in yellow. I've never seen all big Os in an equation
$endgroup$
– mathworker21
Dec 25 '18 at 5:35
$begingroup$
@mathworker21 Fixed.
$endgroup$
– Topo
Dec 25 '18 at 5:50
$begingroup$
Also, you don't need the $O(1)$ if you have the $O(log (x+2))$
$endgroup$
– mathworker21
Dec 25 '18 at 5:56
add a comment |
$begingroup$
Prove that $displaystyle sum_{nle x}frac 1n=log (x+2)+O(1)$.
We have, $displaystyle sum_{nle x}frac 1n=log x +gamma+O(1/x)$. Now if I can show that $log(x+2)-log x+O(1/x)=O(1)$ then I have done.
Now, $log(x+2)-log x+O(1/x)=log left(frac{x+2}{x}right)+O(1/x)=O(1/x).$
How can I prove this ?
complex-analysis number-theory analytic-number-theory
$endgroup$
Prove that $displaystyle sum_{nle x}frac 1n=log (x+2)+O(1)$.
We have, $displaystyle sum_{nle x}frac 1n=log x +gamma+O(1/x)$. Now if I can show that $log(x+2)-log x+O(1/x)=O(1)$ then I have done.
Now, $log(x+2)-log x+O(1/x)=log left(frac{x+2}{x}right)+O(1/x)=O(1/x).$
How can I prove this ?
complex-analysis number-theory analytic-number-theory
complex-analysis number-theory analytic-number-theory
edited Dec 25 '18 at 19:29
Topo
asked Dec 25 '18 at 4:59
TopoTopo
330314
330314
$begingroup$
I don't understand the thing in yellow. I've never seen all big Os in an equation
$endgroup$
– mathworker21
Dec 25 '18 at 5:35
$begingroup$
@mathworker21 Fixed.
$endgroup$
– Topo
Dec 25 '18 at 5:50
$begingroup$
Also, you don't need the $O(1)$ if you have the $O(log (x+2))$
$endgroup$
– mathworker21
Dec 25 '18 at 5:56
add a comment |
$begingroup$
I don't understand the thing in yellow. I've never seen all big Os in an equation
$endgroup$
– mathworker21
Dec 25 '18 at 5:35
$begingroup$
@mathworker21 Fixed.
$endgroup$
– Topo
Dec 25 '18 at 5:50
$begingroup$
Also, you don't need the $O(1)$ if you have the $O(log (x+2))$
$endgroup$
– mathworker21
Dec 25 '18 at 5:56
$begingroup$
I don't understand the thing in yellow. I've never seen all big Os in an equation
$endgroup$
– mathworker21
Dec 25 '18 at 5:35
$begingroup$
I don't understand the thing in yellow. I've never seen all big Os in an equation
$endgroup$
– mathworker21
Dec 25 '18 at 5:35
$begingroup$
@mathworker21 Fixed.
$endgroup$
– Topo
Dec 25 '18 at 5:50
$begingroup$
@mathworker21 Fixed.
$endgroup$
– Topo
Dec 25 '18 at 5:50
$begingroup$
Also, you don't need the $O(1)$ if you have the $O(log (x+2))$
$endgroup$
– mathworker21
Dec 25 '18 at 5:56
$begingroup$
Also, you don't need the $O(1)$ if you have the $O(log (x+2))$
$endgroup$
– mathworker21
Dec 25 '18 at 5:56
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
All you need is
$log(1+z) < z$
for $z > 0$.
Then
$log(x+2)-log(x)
=log(1+frac{2}{x})
lt frac{2}{x}
=O(frac1{x})
$.
To show
$log(1+z) < z$
for $z > 0$:
$log(1+z)
=int_0^z frac{dt}{1+t}
lt int_0^z dt
=z
$.
You can also use the integral
to get a lower bound:
$begin{array}\
log(1+z)
&=int_0^z frac{dt}{1+t}\
> int_0^z frac{dt}{1+z}\
&=frac{z}{1+z}\
&=frac{z+z^2-z^2}{1+z}\
&=z-frac{z^2}{1+z}\
> z-z^2\
end{array}
$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051851%2fasymptotic-formula-for-sum-n-le-x-frac-1n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
All you need is
$log(1+z) < z$
for $z > 0$.
Then
$log(x+2)-log(x)
=log(1+frac{2}{x})
lt frac{2}{x}
=O(frac1{x})
$.
To show
$log(1+z) < z$
for $z > 0$:
$log(1+z)
=int_0^z frac{dt}{1+t}
lt int_0^z dt
=z
$.
You can also use the integral
to get a lower bound:
$begin{array}\
log(1+z)
&=int_0^z frac{dt}{1+t}\
> int_0^z frac{dt}{1+z}\
&=frac{z}{1+z}\
&=frac{z+z^2-z^2}{1+z}\
&=z-frac{z^2}{1+z}\
> z-z^2\
end{array}
$
$endgroup$
add a comment |
$begingroup$
All you need is
$log(1+z) < z$
for $z > 0$.
Then
$log(x+2)-log(x)
=log(1+frac{2}{x})
lt frac{2}{x}
=O(frac1{x})
$.
To show
$log(1+z) < z$
for $z > 0$:
$log(1+z)
=int_0^z frac{dt}{1+t}
lt int_0^z dt
=z
$.
You can also use the integral
to get a lower bound:
$begin{array}\
log(1+z)
&=int_0^z frac{dt}{1+t}\
> int_0^z frac{dt}{1+z}\
&=frac{z}{1+z}\
&=frac{z+z^2-z^2}{1+z}\
&=z-frac{z^2}{1+z}\
> z-z^2\
end{array}
$
$endgroup$
add a comment |
$begingroup$
All you need is
$log(1+z) < z$
for $z > 0$.
Then
$log(x+2)-log(x)
=log(1+frac{2}{x})
lt frac{2}{x}
=O(frac1{x})
$.
To show
$log(1+z) < z$
for $z > 0$:
$log(1+z)
=int_0^z frac{dt}{1+t}
lt int_0^z dt
=z
$.
You can also use the integral
to get a lower bound:
$begin{array}\
log(1+z)
&=int_0^z frac{dt}{1+t}\
> int_0^z frac{dt}{1+z}\
&=frac{z}{1+z}\
&=frac{z+z^2-z^2}{1+z}\
&=z-frac{z^2}{1+z}\
> z-z^2\
end{array}
$
$endgroup$
All you need is
$log(1+z) < z$
for $z > 0$.
Then
$log(x+2)-log(x)
=log(1+frac{2}{x})
lt frac{2}{x}
=O(frac1{x})
$.
To show
$log(1+z) < z$
for $z > 0$:
$log(1+z)
=int_0^z frac{dt}{1+t}
lt int_0^z dt
=z
$.
You can also use the integral
to get a lower bound:
$begin{array}\
log(1+z)
&=int_0^z frac{dt}{1+t}\
> int_0^z frac{dt}{1+z}\
&=frac{z}{1+z}\
&=frac{z+z^2-z^2}{1+z}\
&=z-frac{z^2}{1+z}\
> z-z^2\
end{array}
$
answered Dec 25 '18 at 5:09
marty cohenmarty cohen
76.1k549130
76.1k549130
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051851%2fasymptotic-formula-for-sum-n-le-x-frac-1n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I don't understand the thing in yellow. I've never seen all big Os in an equation
$endgroup$
– mathworker21
Dec 25 '18 at 5:35
$begingroup$
@mathworker21 Fixed.
$endgroup$
– Topo
Dec 25 '18 at 5:50
$begingroup$
Also, you don't need the $O(1)$ if you have the $O(log (x+2))$
$endgroup$
– mathworker21
Dec 25 '18 at 5:56