What is $A^{31}+B^{35}$












2












$begingroup$


If $AB=B$ and $BA=A$ then $A^{31}+B^{35}$ is?



(A)$A^2+B^2$



(B)$A+B$



(C)$A^4+B^4$



(D)$A^3+B^3$



My work



$AB=B rightarrow ABB^{-1}=BB^{-1}$



So, $A=I$



Similarly $B=I$



All option seem valid to me :O










share|cite|improve this question









$endgroup$








  • 4




    $begingroup$
    What if $B$ is singular?
    $endgroup$
    – Umberto P.
    Dec 25 '18 at 3:48










  • $begingroup$
    Then $B^{-1}$ won't exist.
    $endgroup$
    – user3767495
    Dec 25 '18 at 3:53






  • 1




    $begingroup$
    @user3767495: And so your entire argument breaks down ...
    $endgroup$
    – Henning Makholm
    Dec 25 '18 at 3:53
















2












$begingroup$


If $AB=B$ and $BA=A$ then $A^{31}+B^{35}$ is?



(A)$A^2+B^2$



(B)$A+B$



(C)$A^4+B^4$



(D)$A^3+B^3$



My work



$AB=B rightarrow ABB^{-1}=BB^{-1}$



So, $A=I$



Similarly $B=I$



All option seem valid to me :O










share|cite|improve this question









$endgroup$








  • 4




    $begingroup$
    What if $B$ is singular?
    $endgroup$
    – Umberto P.
    Dec 25 '18 at 3:48










  • $begingroup$
    Then $B^{-1}$ won't exist.
    $endgroup$
    – user3767495
    Dec 25 '18 at 3:53






  • 1




    $begingroup$
    @user3767495: And so your entire argument breaks down ...
    $endgroup$
    – Henning Makholm
    Dec 25 '18 at 3:53














2












2








2





$begingroup$


If $AB=B$ and $BA=A$ then $A^{31}+B^{35}$ is?



(A)$A^2+B^2$



(B)$A+B$



(C)$A^4+B^4$



(D)$A^3+B^3$



My work



$AB=B rightarrow ABB^{-1}=BB^{-1}$



So, $A=I$



Similarly $B=I$



All option seem valid to me :O










share|cite|improve this question









$endgroup$




If $AB=B$ and $BA=A$ then $A^{31}+B^{35}$ is?



(A)$A^2+B^2$



(B)$A+B$



(C)$A^4+B^4$



(D)$A^3+B^3$



My work



$AB=B rightarrow ABB^{-1}=BB^{-1}$



So, $A=I$



Similarly $B=I$



All option seem valid to me :O







linear-algebra






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 25 '18 at 3:45









user3767495user3767495

40218




40218








  • 4




    $begingroup$
    What if $B$ is singular?
    $endgroup$
    – Umberto P.
    Dec 25 '18 at 3:48










  • $begingroup$
    Then $B^{-1}$ won't exist.
    $endgroup$
    – user3767495
    Dec 25 '18 at 3:53






  • 1




    $begingroup$
    @user3767495: And so your entire argument breaks down ...
    $endgroup$
    – Henning Makholm
    Dec 25 '18 at 3:53














  • 4




    $begingroup$
    What if $B$ is singular?
    $endgroup$
    – Umberto P.
    Dec 25 '18 at 3:48










  • $begingroup$
    Then $B^{-1}$ won't exist.
    $endgroup$
    – user3767495
    Dec 25 '18 at 3:53






  • 1




    $begingroup$
    @user3767495: And so your entire argument breaks down ...
    $endgroup$
    – Henning Makholm
    Dec 25 '18 at 3:53








4




4




$begingroup$
What if $B$ is singular?
$endgroup$
– Umberto P.
Dec 25 '18 at 3:48




$begingroup$
What if $B$ is singular?
$endgroup$
– Umberto P.
Dec 25 '18 at 3:48












$begingroup$
Then $B^{-1}$ won't exist.
$endgroup$
– user3767495
Dec 25 '18 at 3:53




$begingroup$
Then $B^{-1}$ won't exist.
$endgroup$
– user3767495
Dec 25 '18 at 3:53




1




1




$begingroup$
@user3767495: And so your entire argument breaks down ...
$endgroup$
– Henning Makholm
Dec 25 '18 at 3:53




$begingroup$
@user3767495: And so your entire argument breaks down ...
$endgroup$
– Henning Makholm
Dec 25 '18 at 3:53










1 Answer
1






active

oldest

votes


















9












$begingroup$

You are given $AB = B$ so that $ABA = BA$. You are also given $BA = A$ so that $A^2 = A$.



From here $A^{31} = A$ is a friendly exercise.



For that matter, so is $B^{35} = B$.



Happy holidays.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    So, these are idempotent matrices.But why other options are invalid?
    $endgroup$
    – user3767495
    Dec 25 '18 at 3:58






  • 3




    $begingroup$
    The other options are not invalid. If $A^2 = A$, then $A^4 = A^3 = A^2 = A$. Similarly for $B$. Thus, all four options are equal. If you can only pick one though, I'd go with (B) as it is the "simplest" answer in some sense.
    $endgroup$
    – JimmyK4542
    Dec 25 '18 at 3:59












  • $begingroup$
    Thank you so much Guys :)
    $endgroup$
    – user3767495
    Dec 25 '18 at 4:03












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051826%2fwhat-is-a31b35%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









9












$begingroup$

You are given $AB = B$ so that $ABA = BA$. You are also given $BA = A$ so that $A^2 = A$.



From here $A^{31} = A$ is a friendly exercise.



For that matter, so is $B^{35} = B$.



Happy holidays.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    So, these are idempotent matrices.But why other options are invalid?
    $endgroup$
    – user3767495
    Dec 25 '18 at 3:58






  • 3




    $begingroup$
    The other options are not invalid. If $A^2 = A$, then $A^4 = A^3 = A^2 = A$. Similarly for $B$. Thus, all four options are equal. If you can only pick one though, I'd go with (B) as it is the "simplest" answer in some sense.
    $endgroup$
    – JimmyK4542
    Dec 25 '18 at 3:59












  • $begingroup$
    Thank you so much Guys :)
    $endgroup$
    – user3767495
    Dec 25 '18 at 4:03
















9












$begingroup$

You are given $AB = B$ so that $ABA = BA$. You are also given $BA = A$ so that $A^2 = A$.



From here $A^{31} = A$ is a friendly exercise.



For that matter, so is $B^{35} = B$.



Happy holidays.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    So, these are idempotent matrices.But why other options are invalid?
    $endgroup$
    – user3767495
    Dec 25 '18 at 3:58






  • 3




    $begingroup$
    The other options are not invalid. If $A^2 = A$, then $A^4 = A^3 = A^2 = A$. Similarly for $B$. Thus, all four options are equal. If you can only pick one though, I'd go with (B) as it is the "simplest" answer in some sense.
    $endgroup$
    – JimmyK4542
    Dec 25 '18 at 3:59












  • $begingroup$
    Thank you so much Guys :)
    $endgroup$
    – user3767495
    Dec 25 '18 at 4:03














9












9








9





$begingroup$

You are given $AB = B$ so that $ABA = BA$. You are also given $BA = A$ so that $A^2 = A$.



From here $A^{31} = A$ is a friendly exercise.



For that matter, so is $B^{35} = B$.



Happy holidays.






share|cite|improve this answer









$endgroup$



You are given $AB = B$ so that $ABA = BA$. You are also given $BA = A$ so that $A^2 = A$.



From here $A^{31} = A$ is a friendly exercise.



For that matter, so is $B^{35} = B$.



Happy holidays.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 25 '18 at 3:55









Umberto P.Umberto P.

40.9k13471




40.9k13471












  • $begingroup$
    So, these are idempotent matrices.But why other options are invalid?
    $endgroup$
    – user3767495
    Dec 25 '18 at 3:58






  • 3




    $begingroup$
    The other options are not invalid. If $A^2 = A$, then $A^4 = A^3 = A^2 = A$. Similarly for $B$. Thus, all four options are equal. If you can only pick one though, I'd go with (B) as it is the "simplest" answer in some sense.
    $endgroup$
    – JimmyK4542
    Dec 25 '18 at 3:59












  • $begingroup$
    Thank you so much Guys :)
    $endgroup$
    – user3767495
    Dec 25 '18 at 4:03


















  • $begingroup$
    So, these are idempotent matrices.But why other options are invalid?
    $endgroup$
    – user3767495
    Dec 25 '18 at 3:58






  • 3




    $begingroup$
    The other options are not invalid. If $A^2 = A$, then $A^4 = A^3 = A^2 = A$. Similarly for $B$. Thus, all four options are equal. If you can only pick one though, I'd go with (B) as it is the "simplest" answer in some sense.
    $endgroup$
    – JimmyK4542
    Dec 25 '18 at 3:59












  • $begingroup$
    Thank you so much Guys :)
    $endgroup$
    – user3767495
    Dec 25 '18 at 4:03
















$begingroup$
So, these are idempotent matrices.But why other options are invalid?
$endgroup$
– user3767495
Dec 25 '18 at 3:58




$begingroup$
So, these are idempotent matrices.But why other options are invalid?
$endgroup$
– user3767495
Dec 25 '18 at 3:58




3




3




$begingroup$
The other options are not invalid. If $A^2 = A$, then $A^4 = A^3 = A^2 = A$. Similarly for $B$. Thus, all four options are equal. If you can only pick one though, I'd go with (B) as it is the "simplest" answer in some sense.
$endgroup$
– JimmyK4542
Dec 25 '18 at 3:59






$begingroup$
The other options are not invalid. If $A^2 = A$, then $A^4 = A^3 = A^2 = A$. Similarly for $B$. Thus, all four options are equal. If you can only pick one though, I'd go with (B) as it is the "simplest" answer in some sense.
$endgroup$
– JimmyK4542
Dec 25 '18 at 3:59














$begingroup$
Thank you so much Guys :)
$endgroup$
– user3767495
Dec 25 '18 at 4:03




$begingroup$
Thank you so much Guys :)
$endgroup$
– user3767495
Dec 25 '18 at 4:03


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051826%2fwhat-is-a31b35%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Musa