Is the sequence , 0,1/2,0,1/3,2/3,0,1/4,2/4,3/4,0… equidistributed?












0












$begingroup$


Is the sequence ,



$$0,1/2,0,1/3,2/3,0,1/4,2/4,3/4,0..... $$
equidistributed ?



A sequence ${xi_n}$ is equidistributed in $[0,1),$ that is if
$$lim_{Nrightarrowinfty}frac{Card{1leq nleq N|xi_nin(a,b)}}{N}=b-a$$



Well ,the sequence write in a formula is :
$$xi_n=0,;; whenever; n=k(k-1)/2+1$$
$$xi_n=frac{k}{m},;;whenever;n=frac{(m-1)(m–2)}{2}+k$$
$forall N,(a,b)$,firt of all 0 is in the $(a,b)$, so
$$Card{k|frac{k(k-1)}{2}+1leq N}=O(sqrt{N})$$
Next we let
$$frac{(m-1)(m–2)}{2}+kleq N$$
and
$$amleq kleq bm$$
Just like a nonlinear arrangement problem, suppose the $m$ is the $x$-axis, the $k$ is the $y$-axis, the question now , is to estimate the integer points of this area .



I don't know how to do next










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Can you show us what progress you've made?
    $endgroup$
    – zoidberg
    Dec 23 '18 at 7:27










  • $begingroup$
    @norfair of course, I show it in the answer ..
    $endgroup$
    – Alexander Lau
    Dec 23 '18 at 7:47
















0












$begingroup$


Is the sequence ,



$$0,1/2,0,1/3,2/3,0,1/4,2/4,3/4,0..... $$
equidistributed ?



A sequence ${xi_n}$ is equidistributed in $[0,1),$ that is if
$$lim_{Nrightarrowinfty}frac{Card{1leq nleq N|xi_nin(a,b)}}{N}=b-a$$



Well ,the sequence write in a formula is :
$$xi_n=0,;; whenever; n=k(k-1)/2+1$$
$$xi_n=frac{k}{m},;;whenever;n=frac{(m-1)(m–2)}{2}+k$$
$forall N,(a,b)$,firt of all 0 is in the $(a,b)$, so
$$Card{k|frac{k(k-1)}{2}+1leq N}=O(sqrt{N})$$
Next we let
$$frac{(m-1)(m–2)}{2}+kleq N$$
and
$$amleq kleq bm$$
Just like a nonlinear arrangement problem, suppose the $m$ is the $x$-axis, the $k$ is the $y$-axis, the question now , is to estimate the integer points of this area .



I don't know how to do next










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Can you show us what progress you've made?
    $endgroup$
    – zoidberg
    Dec 23 '18 at 7:27










  • $begingroup$
    @norfair of course, I show it in the answer ..
    $endgroup$
    – Alexander Lau
    Dec 23 '18 at 7:47














0












0








0





$begingroup$


Is the sequence ,



$$0,1/2,0,1/3,2/3,0,1/4,2/4,3/4,0..... $$
equidistributed ?



A sequence ${xi_n}$ is equidistributed in $[0,1),$ that is if
$$lim_{Nrightarrowinfty}frac{Card{1leq nleq N|xi_nin(a,b)}}{N}=b-a$$



Well ,the sequence write in a formula is :
$$xi_n=0,;; whenever; n=k(k-1)/2+1$$
$$xi_n=frac{k}{m},;;whenever;n=frac{(m-1)(m–2)}{2}+k$$
$forall N,(a,b)$,firt of all 0 is in the $(a,b)$, so
$$Card{k|frac{k(k-1)}{2}+1leq N}=O(sqrt{N})$$
Next we let
$$frac{(m-1)(m–2)}{2}+kleq N$$
and
$$amleq kleq bm$$
Just like a nonlinear arrangement problem, suppose the $m$ is the $x$-axis, the $k$ is the $y$-axis, the question now , is to estimate the integer points of this area .



I don't know how to do next










share|cite|improve this question











$endgroup$




Is the sequence ,



$$0,1/2,0,1/3,2/3,0,1/4,2/4,3/4,0..... $$
equidistributed ?



A sequence ${xi_n}$ is equidistributed in $[0,1),$ that is if
$$lim_{Nrightarrowinfty}frac{Card{1leq nleq N|xi_nin(a,b)}}{N}=b-a$$



Well ,the sequence write in a formula is :
$$xi_n=0,;; whenever; n=k(k-1)/2+1$$
$$xi_n=frac{k}{m},;;whenever;n=frac{(m-1)(m–2)}{2}+k$$
$forall N,(a,b)$,firt of all 0 is in the $(a,b)$, so
$$Card{k|frac{k(k-1)}{2}+1leq N}=O(sqrt{N})$$
Next we let
$$frac{(m-1)(m–2)}{2}+kleq N$$
and
$$amleq kleq bm$$
Just like a nonlinear arrangement problem, suppose the $m$ is the $x$-axis, the $k$ is the $y$-axis, the question now , is to estimate the integer points of this area .



I don't know how to do next







number-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 23 '18 at 8:38







Alexander Lau

















asked Dec 23 '18 at 6:57









Alexander LauAlexander Lau

1318




1318








  • 2




    $begingroup$
    Can you show us what progress you've made?
    $endgroup$
    – zoidberg
    Dec 23 '18 at 7:27










  • $begingroup$
    @norfair of course, I show it in the answer ..
    $endgroup$
    – Alexander Lau
    Dec 23 '18 at 7:47














  • 2




    $begingroup$
    Can you show us what progress you've made?
    $endgroup$
    – zoidberg
    Dec 23 '18 at 7:27










  • $begingroup$
    @norfair of course, I show it in the answer ..
    $endgroup$
    – Alexander Lau
    Dec 23 '18 at 7:47








2




2




$begingroup$
Can you show us what progress you've made?
$endgroup$
– zoidberg
Dec 23 '18 at 7:27




$begingroup$
Can you show us what progress you've made?
$endgroup$
– zoidberg
Dec 23 '18 at 7:27












$begingroup$
@norfair of course, I show it in the answer ..
$endgroup$
– Alexander Lau
Dec 23 '18 at 7:47




$begingroup$
@norfair of course, I show it in the answer ..
$endgroup$
– Alexander Lau
Dec 23 '18 at 7:47










1 Answer
1






active

oldest

votes


















0












$begingroup$

Well ,the sequence write in a formula is :
$$xi_n=0,;; whenever; n=k(k-1)/2+1$$
$$xi_n=frac{k}{m},;;whenever;n=frac{(m-1)(m–2)}{2}+k$$
$forall N,(a,b)$,firt of all 0 is in the $(a,b)$, so
$$Card{k|frac{k(k-1)}{2}+1leq N}=O(sqrt{N})$$
Next we let
$$frac{(m-1)(m–2)}{2}+kleq N$$
and
$$amleq kleq bm$$
Just like a nonlinear arrangement problem, suppose the $m$ is the $x$-axis, the $k$ is the $y$-axis, the question now , is to estimate the integer points of this area .






share|cite|improve this answer









$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050120%2fis-the-sequence-0-1-2-0-1-3-2-3-0-1-4-2-4-3-4-0-equidistributed%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Well ,the sequence write in a formula is :
    $$xi_n=0,;; whenever; n=k(k-1)/2+1$$
    $$xi_n=frac{k}{m},;;whenever;n=frac{(m-1)(m–2)}{2}+k$$
    $forall N,(a,b)$,firt of all 0 is in the $(a,b)$, so
    $$Card{k|frac{k(k-1)}{2}+1leq N}=O(sqrt{N})$$
    Next we let
    $$frac{(m-1)(m–2)}{2}+kleq N$$
    and
    $$amleq kleq bm$$
    Just like a nonlinear arrangement problem, suppose the $m$ is the $x$-axis, the $k$ is the $y$-axis, the question now , is to estimate the integer points of this area .






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Well ,the sequence write in a formula is :
      $$xi_n=0,;; whenever; n=k(k-1)/2+1$$
      $$xi_n=frac{k}{m},;;whenever;n=frac{(m-1)(m–2)}{2}+k$$
      $forall N,(a,b)$,firt of all 0 is in the $(a,b)$, so
      $$Card{k|frac{k(k-1)}{2}+1leq N}=O(sqrt{N})$$
      Next we let
      $$frac{(m-1)(m–2)}{2}+kleq N$$
      and
      $$amleq kleq bm$$
      Just like a nonlinear arrangement problem, suppose the $m$ is the $x$-axis, the $k$ is the $y$-axis, the question now , is to estimate the integer points of this area .






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Well ,the sequence write in a formula is :
        $$xi_n=0,;; whenever; n=k(k-1)/2+1$$
        $$xi_n=frac{k}{m},;;whenever;n=frac{(m-1)(m–2)}{2}+k$$
        $forall N,(a,b)$,firt of all 0 is in the $(a,b)$, so
        $$Card{k|frac{k(k-1)}{2}+1leq N}=O(sqrt{N})$$
        Next we let
        $$frac{(m-1)(m–2)}{2}+kleq N$$
        and
        $$amleq kleq bm$$
        Just like a nonlinear arrangement problem, suppose the $m$ is the $x$-axis, the $k$ is the $y$-axis, the question now , is to estimate the integer points of this area .






        share|cite|improve this answer









        $endgroup$



        Well ,the sequence write in a formula is :
        $$xi_n=0,;; whenever; n=k(k-1)/2+1$$
        $$xi_n=frac{k}{m},;;whenever;n=frac{(m-1)(m–2)}{2}+k$$
        $forall N,(a,b)$,firt of all 0 is in the $(a,b)$, so
        $$Card{k|frac{k(k-1)}{2}+1leq N}=O(sqrt{N})$$
        Next we let
        $$frac{(m-1)(m–2)}{2}+kleq N$$
        and
        $$amleq kleq bm$$
        Just like a nonlinear arrangement problem, suppose the $m$ is the $x$-axis, the $k$ is the $y$-axis, the question now , is to estimate the integer points of this area .







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 23 '18 at 7:46









        Alexander LauAlexander Lau

        1318




        1318






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050120%2fis-the-sequence-0-1-2-0-1-3-2-3-0-1-4-2-4-3-4-0-equidistributed%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            Puebla de Zaragoza

            Musa