PQRS is a rhombus. Given that $overrightarrow{PQ}=a$ and $ overrightarrow{QR}=b$.
up vote
0
down vote
favorite
PQRS is a rhombus. Given that $overrightarrow{PQ}=a$ and $
overrightarrow{QR}=b$.
(a) express the vectors $overrightarrow{PR}$ and $
overrightarrow{QS}$ in terms of $a$ and $b$
(b) hence show that the diagonals in a rhombus intersect at right
angles.
My Attempt:
(a) $overrightarrow{PR}=a+b$ and $overrightarrow{QS}=b-a
$
I have no idea how to work out part (b). Any help is appreciated.
vectors
add a comment |
up vote
0
down vote
favorite
PQRS is a rhombus. Given that $overrightarrow{PQ}=a$ and $
overrightarrow{QR}=b$.
(a) express the vectors $overrightarrow{PR}$ and $
overrightarrow{QS}$ in terms of $a$ and $b$
(b) hence show that the diagonals in a rhombus intersect at right
angles.
My Attempt:
(a) $overrightarrow{PR}=a+b$ and $overrightarrow{QS}=b-a
$
I have no idea how to work out part (b). Any help is appreciated.
vectors
now show that $overrightarrow{PR} cdot overrightarrow{QS}=0$
– Vasya
Nov 14 at 4:00
@Vasya, Please check my comment below.
– Meghan C
Nov 14 at 4:22
you'll get $-overrightarrow{a}overrightarrow{a}+overrightarrow{b}overrightarrow{b}=0$ because both vectors have the same magnitude (this is rhombus).
– Vasya
Nov 14 at 4:32
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
PQRS is a rhombus. Given that $overrightarrow{PQ}=a$ and $
overrightarrow{QR}=b$.
(a) express the vectors $overrightarrow{PR}$ and $
overrightarrow{QS}$ in terms of $a$ and $b$
(b) hence show that the diagonals in a rhombus intersect at right
angles.
My Attempt:
(a) $overrightarrow{PR}=a+b$ and $overrightarrow{QS}=b-a
$
I have no idea how to work out part (b). Any help is appreciated.
vectors
PQRS is a rhombus. Given that $overrightarrow{PQ}=a$ and $
overrightarrow{QR}=b$.
(a) express the vectors $overrightarrow{PR}$ and $
overrightarrow{QS}$ in terms of $a$ and $b$
(b) hence show that the diagonals in a rhombus intersect at right
angles.
My Attempt:
(a) $overrightarrow{PR}=a+b$ and $overrightarrow{QS}=b-a
$
I have no idea how to work out part (b). Any help is appreciated.
vectors
vectors
asked Nov 14 at 3:50
Meghan C
19927
19927
now show that $overrightarrow{PR} cdot overrightarrow{QS}=0$
– Vasya
Nov 14 at 4:00
@Vasya, Please check my comment below.
– Meghan C
Nov 14 at 4:22
you'll get $-overrightarrow{a}overrightarrow{a}+overrightarrow{b}overrightarrow{b}=0$ because both vectors have the same magnitude (this is rhombus).
– Vasya
Nov 14 at 4:32
add a comment |
now show that $overrightarrow{PR} cdot overrightarrow{QS}=0$
– Vasya
Nov 14 at 4:00
@Vasya, Please check my comment below.
– Meghan C
Nov 14 at 4:22
you'll get $-overrightarrow{a}overrightarrow{a}+overrightarrow{b}overrightarrow{b}=0$ because both vectors have the same magnitude (this is rhombus).
– Vasya
Nov 14 at 4:32
now show that $overrightarrow{PR} cdot overrightarrow{QS}=0$
– Vasya
Nov 14 at 4:00
now show that $overrightarrow{PR} cdot overrightarrow{QS}=0$
– Vasya
Nov 14 at 4:00
@Vasya, Please check my comment below.
– Meghan C
Nov 14 at 4:22
@Vasya, Please check my comment below.
– Meghan C
Nov 14 at 4:22
you'll get $-overrightarrow{a}overrightarrow{a}+overrightarrow{b}overrightarrow{b}=0$ because both vectors have the same magnitude (this is rhombus).
– Vasya
Nov 14 at 4:32
you'll get $-overrightarrow{a}overrightarrow{a}+overrightarrow{b}overrightarrow{b}=0$ because both vectors have the same magnitude (this is rhombus).
– Vasya
Nov 14 at 4:32
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
Just take the dot product of diagonals, that is 0( because b=a), hence proved.
Hope it helps.
I am stuck where (a+b).(b-a)=0, how do you proceed from there? Please provide a detailed explanation, because I do not understand how b = a will help here.
– Meghan C
Nov 14 at 4:21
Multiplication of vectors is like numbers and all algebraic identities hold because of commutativity of dot product
– Crazy for maths
Nov 14 at 4:29
$(vec a+vec b)(vec b-vec a)=vec avec b-vec avec a+vec bvec b-vec bvec a$. For dot product $vec avec b=vec bvec a$ and $vec a vec a=a^2$
– Andrei
Nov 14 at 4:29
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
Just take the dot product of diagonals, that is 0( because b=a), hence proved.
Hope it helps.
I am stuck where (a+b).(b-a)=0, how do you proceed from there? Please provide a detailed explanation, because I do not understand how b = a will help here.
– Meghan C
Nov 14 at 4:21
Multiplication of vectors is like numbers and all algebraic identities hold because of commutativity of dot product
– Crazy for maths
Nov 14 at 4:29
$(vec a+vec b)(vec b-vec a)=vec avec b-vec avec a+vec bvec b-vec bvec a$. For dot product $vec avec b=vec bvec a$ and $vec a vec a=a^2$
– Andrei
Nov 14 at 4:29
add a comment |
up vote
0
down vote
Just take the dot product of diagonals, that is 0( because b=a), hence proved.
Hope it helps.
I am stuck where (a+b).(b-a)=0, how do you proceed from there? Please provide a detailed explanation, because I do not understand how b = a will help here.
– Meghan C
Nov 14 at 4:21
Multiplication of vectors is like numbers and all algebraic identities hold because of commutativity of dot product
– Crazy for maths
Nov 14 at 4:29
$(vec a+vec b)(vec b-vec a)=vec avec b-vec avec a+vec bvec b-vec bvec a$. For dot product $vec avec b=vec bvec a$ and $vec a vec a=a^2$
– Andrei
Nov 14 at 4:29
add a comment |
up vote
0
down vote
up vote
0
down vote
Just take the dot product of diagonals, that is 0( because b=a), hence proved.
Hope it helps.
Just take the dot product of diagonals, that is 0( because b=a), hence proved.
Hope it helps.
answered Nov 14 at 4:00
Crazy for maths
4948
4948
I am stuck where (a+b).(b-a)=0, how do you proceed from there? Please provide a detailed explanation, because I do not understand how b = a will help here.
– Meghan C
Nov 14 at 4:21
Multiplication of vectors is like numbers and all algebraic identities hold because of commutativity of dot product
– Crazy for maths
Nov 14 at 4:29
$(vec a+vec b)(vec b-vec a)=vec avec b-vec avec a+vec bvec b-vec bvec a$. For dot product $vec avec b=vec bvec a$ and $vec a vec a=a^2$
– Andrei
Nov 14 at 4:29
add a comment |
I am stuck where (a+b).(b-a)=0, how do you proceed from there? Please provide a detailed explanation, because I do not understand how b = a will help here.
– Meghan C
Nov 14 at 4:21
Multiplication of vectors is like numbers and all algebraic identities hold because of commutativity of dot product
– Crazy for maths
Nov 14 at 4:29
$(vec a+vec b)(vec b-vec a)=vec avec b-vec avec a+vec bvec b-vec bvec a$. For dot product $vec avec b=vec bvec a$ and $vec a vec a=a^2$
– Andrei
Nov 14 at 4:29
I am stuck where (a+b).(b-a)=0, how do you proceed from there? Please provide a detailed explanation, because I do not understand how b = a will help here.
– Meghan C
Nov 14 at 4:21
I am stuck where (a+b).(b-a)=0, how do you proceed from there? Please provide a detailed explanation, because I do not understand how b = a will help here.
– Meghan C
Nov 14 at 4:21
Multiplication of vectors is like numbers and all algebraic identities hold because of commutativity of dot product
– Crazy for maths
Nov 14 at 4:29
Multiplication of vectors is like numbers and all algebraic identities hold because of commutativity of dot product
– Crazy for maths
Nov 14 at 4:29
$(vec a+vec b)(vec b-vec a)=vec avec b-vec avec a+vec bvec b-vec bvec a$. For dot product $vec avec b=vec bvec a$ and $vec a vec a=a^2$
– Andrei
Nov 14 at 4:29
$(vec a+vec b)(vec b-vec a)=vec avec b-vec avec a+vec bvec b-vec bvec a$. For dot product $vec avec b=vec bvec a$ and $vec a vec a=a^2$
– Andrei
Nov 14 at 4:29
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2997753%2fpqrs-is-a-rhombus-given-that-overrightarrowpq-a-and-overrightarrowqr%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
now show that $overrightarrow{PR} cdot overrightarrow{QS}=0$
– Vasya
Nov 14 at 4:00
@Vasya, Please check my comment below.
– Meghan C
Nov 14 at 4:22
you'll get $-overrightarrow{a}overrightarrow{a}+overrightarrow{b}overrightarrow{b}=0$ because both vectors have the same magnitude (this is rhombus).
– Vasya
Nov 14 at 4:32