PQRS is a rhombus. Given that $overrightarrow{PQ}=a$ and $ overrightarrow{QR}=b$.











up vote
0
down vote

favorite












PQRS is a rhombus. Given that $overrightarrow{PQ}=a$ and $
overrightarrow{QR}=b$
.



(a) express the vectors $overrightarrow{PR}$ and $
overrightarrow{QS}$
in terms of $a$ and $b$



(b) hence show that the diagonals in a rhombus intersect at right
angles.



My Attempt:



(a) $overrightarrow{PR}=a+b$ and $overrightarrow{QS}=b-a
$



I have no idea how to work out part (b). Any help is appreciated.










share|cite|improve this question






















  • now show that $overrightarrow{PR} cdot overrightarrow{QS}=0$
    – Vasya
    Nov 14 at 4:00












  • @Vasya, Please check my comment below.
    – Meghan C
    Nov 14 at 4:22












  • you'll get $-overrightarrow{a}overrightarrow{a}+overrightarrow{b}overrightarrow{b}=0$ because both vectors have the same magnitude (this is rhombus).
    – Vasya
    Nov 14 at 4:32

















up vote
0
down vote

favorite












PQRS is a rhombus. Given that $overrightarrow{PQ}=a$ and $
overrightarrow{QR}=b$
.



(a) express the vectors $overrightarrow{PR}$ and $
overrightarrow{QS}$
in terms of $a$ and $b$



(b) hence show that the diagonals in a rhombus intersect at right
angles.



My Attempt:



(a) $overrightarrow{PR}=a+b$ and $overrightarrow{QS}=b-a
$



I have no idea how to work out part (b). Any help is appreciated.










share|cite|improve this question






















  • now show that $overrightarrow{PR} cdot overrightarrow{QS}=0$
    – Vasya
    Nov 14 at 4:00












  • @Vasya, Please check my comment below.
    – Meghan C
    Nov 14 at 4:22












  • you'll get $-overrightarrow{a}overrightarrow{a}+overrightarrow{b}overrightarrow{b}=0$ because both vectors have the same magnitude (this is rhombus).
    – Vasya
    Nov 14 at 4:32















up vote
0
down vote

favorite









up vote
0
down vote

favorite











PQRS is a rhombus. Given that $overrightarrow{PQ}=a$ and $
overrightarrow{QR}=b$
.



(a) express the vectors $overrightarrow{PR}$ and $
overrightarrow{QS}$
in terms of $a$ and $b$



(b) hence show that the diagonals in a rhombus intersect at right
angles.



My Attempt:



(a) $overrightarrow{PR}=a+b$ and $overrightarrow{QS}=b-a
$



I have no idea how to work out part (b). Any help is appreciated.










share|cite|improve this question













PQRS is a rhombus. Given that $overrightarrow{PQ}=a$ and $
overrightarrow{QR}=b$
.



(a) express the vectors $overrightarrow{PR}$ and $
overrightarrow{QS}$
in terms of $a$ and $b$



(b) hence show that the diagonals in a rhombus intersect at right
angles.



My Attempt:



(a) $overrightarrow{PR}=a+b$ and $overrightarrow{QS}=b-a
$



I have no idea how to work out part (b). Any help is appreciated.







vectors






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 14 at 3:50









Meghan C

19927




19927












  • now show that $overrightarrow{PR} cdot overrightarrow{QS}=0$
    – Vasya
    Nov 14 at 4:00












  • @Vasya, Please check my comment below.
    – Meghan C
    Nov 14 at 4:22












  • you'll get $-overrightarrow{a}overrightarrow{a}+overrightarrow{b}overrightarrow{b}=0$ because both vectors have the same magnitude (this is rhombus).
    – Vasya
    Nov 14 at 4:32




















  • now show that $overrightarrow{PR} cdot overrightarrow{QS}=0$
    – Vasya
    Nov 14 at 4:00












  • @Vasya, Please check my comment below.
    – Meghan C
    Nov 14 at 4:22












  • you'll get $-overrightarrow{a}overrightarrow{a}+overrightarrow{b}overrightarrow{b}=0$ because both vectors have the same magnitude (this is rhombus).
    – Vasya
    Nov 14 at 4:32


















now show that $overrightarrow{PR} cdot overrightarrow{QS}=0$
– Vasya
Nov 14 at 4:00






now show that $overrightarrow{PR} cdot overrightarrow{QS}=0$
– Vasya
Nov 14 at 4:00














@Vasya, Please check my comment below.
– Meghan C
Nov 14 at 4:22






@Vasya, Please check my comment below.
– Meghan C
Nov 14 at 4:22














you'll get $-overrightarrow{a}overrightarrow{a}+overrightarrow{b}overrightarrow{b}=0$ because both vectors have the same magnitude (this is rhombus).
– Vasya
Nov 14 at 4:32






you'll get $-overrightarrow{a}overrightarrow{a}+overrightarrow{b}overrightarrow{b}=0$ because both vectors have the same magnitude (this is rhombus).
– Vasya
Nov 14 at 4:32












1 Answer
1






active

oldest

votes

















up vote
0
down vote













Just take the dot product of diagonals, that is 0( because b=a), hence proved.



Hope it helps.






share|cite|improve this answer





















  • I am stuck where (a+b).(b-a)=0, how do you proceed from there? Please provide a detailed explanation, because I do not understand how b = a will help here.
    – Meghan C
    Nov 14 at 4:21










  • Multiplication of vectors is like numbers and all algebraic identities hold because of commutativity of dot product
    – Crazy for maths
    Nov 14 at 4:29










  • $(vec a+vec b)(vec b-vec a)=vec avec b-vec avec a+vec bvec b-vec bvec a$. For dot product $vec avec b=vec bvec a$ and $vec a vec a=a^2$
    – Andrei
    Nov 14 at 4:29











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2997753%2fpqrs-is-a-rhombus-given-that-overrightarrowpq-a-and-overrightarrowqr%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
0
down vote













Just take the dot product of diagonals, that is 0( because b=a), hence proved.



Hope it helps.






share|cite|improve this answer





















  • I am stuck where (a+b).(b-a)=0, how do you proceed from there? Please provide a detailed explanation, because I do not understand how b = a will help here.
    – Meghan C
    Nov 14 at 4:21










  • Multiplication of vectors is like numbers and all algebraic identities hold because of commutativity of dot product
    – Crazy for maths
    Nov 14 at 4:29










  • $(vec a+vec b)(vec b-vec a)=vec avec b-vec avec a+vec bvec b-vec bvec a$. For dot product $vec avec b=vec bvec a$ and $vec a vec a=a^2$
    – Andrei
    Nov 14 at 4:29















up vote
0
down vote













Just take the dot product of diagonals, that is 0( because b=a), hence proved.



Hope it helps.






share|cite|improve this answer





















  • I am stuck where (a+b).(b-a)=0, how do you proceed from there? Please provide a detailed explanation, because I do not understand how b = a will help here.
    – Meghan C
    Nov 14 at 4:21










  • Multiplication of vectors is like numbers and all algebraic identities hold because of commutativity of dot product
    – Crazy for maths
    Nov 14 at 4:29










  • $(vec a+vec b)(vec b-vec a)=vec avec b-vec avec a+vec bvec b-vec bvec a$. For dot product $vec avec b=vec bvec a$ and $vec a vec a=a^2$
    – Andrei
    Nov 14 at 4:29













up vote
0
down vote










up vote
0
down vote









Just take the dot product of diagonals, that is 0( because b=a), hence proved.



Hope it helps.






share|cite|improve this answer












Just take the dot product of diagonals, that is 0( because b=a), hence proved.



Hope it helps.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Nov 14 at 4:00









Crazy for maths

4948




4948












  • I am stuck where (a+b).(b-a)=0, how do you proceed from there? Please provide a detailed explanation, because I do not understand how b = a will help here.
    – Meghan C
    Nov 14 at 4:21










  • Multiplication of vectors is like numbers and all algebraic identities hold because of commutativity of dot product
    – Crazy for maths
    Nov 14 at 4:29










  • $(vec a+vec b)(vec b-vec a)=vec avec b-vec avec a+vec bvec b-vec bvec a$. For dot product $vec avec b=vec bvec a$ and $vec a vec a=a^2$
    – Andrei
    Nov 14 at 4:29


















  • I am stuck where (a+b).(b-a)=0, how do you proceed from there? Please provide a detailed explanation, because I do not understand how b = a will help here.
    – Meghan C
    Nov 14 at 4:21










  • Multiplication of vectors is like numbers and all algebraic identities hold because of commutativity of dot product
    – Crazy for maths
    Nov 14 at 4:29










  • $(vec a+vec b)(vec b-vec a)=vec avec b-vec avec a+vec bvec b-vec bvec a$. For dot product $vec avec b=vec bvec a$ and $vec a vec a=a^2$
    – Andrei
    Nov 14 at 4:29
















I am stuck where (a+b).(b-a)=0, how do you proceed from there? Please provide a detailed explanation, because I do not understand how b = a will help here.
– Meghan C
Nov 14 at 4:21




I am stuck where (a+b).(b-a)=0, how do you proceed from there? Please provide a detailed explanation, because I do not understand how b = a will help here.
– Meghan C
Nov 14 at 4:21












Multiplication of vectors is like numbers and all algebraic identities hold because of commutativity of dot product
– Crazy for maths
Nov 14 at 4:29




Multiplication of vectors is like numbers and all algebraic identities hold because of commutativity of dot product
– Crazy for maths
Nov 14 at 4:29












$(vec a+vec b)(vec b-vec a)=vec avec b-vec avec a+vec bvec b-vec bvec a$. For dot product $vec avec b=vec bvec a$ and $vec a vec a=a^2$
– Andrei
Nov 14 at 4:29




$(vec a+vec b)(vec b-vec a)=vec avec b-vec avec a+vec bvec b-vec bvec a$. For dot product $vec avec b=vec bvec a$ and $vec a vec a=a^2$
– Andrei
Nov 14 at 4:29


















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2997753%2fpqrs-is-a-rhombus-given-that-overrightarrowpq-a-and-overrightarrowqr%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Musa