Get approximations of series involving Cauchy numbers of the first kind and the Möbius function
$begingroup$
We denote for integers $ngeq 1$ the $n$th Gregory coefficient as $G_n$, and the Möbius function as $mu(n)$. You've here the Wikipedia's article dedicated to the Gregory coefficients.
Using an argument of absolute convergence, and the information of previous Wikipedia for the first related series to the Gregory coefficients and the result due to Candelperger, Coppo and Young, it is obvious to prove that $$sum_{n=1}^inftymu(n)|G_n|tag{1}$$ and $$sum_{n=1}^inftyfrac{|G_n|cdot m(n)}{n}tag{2}$$ are convergent series, where $m(x)$ denotes the function $$m(x)=sum_{1leq kleq x}frac{mu(k)}{k}.tag{3}$$
Question. Have you an idea/hint to get a good approximation (the first four or six digits) of $(1)$ and $(2)$? Many thanks.
I know that there are upper bounds for the absolute value of $(3)$ for large values of $x$.
real-analysis sequences-and-series asymptotics analytic-number-theory mobius-function
$endgroup$
add a comment |
$begingroup$
We denote for integers $ngeq 1$ the $n$th Gregory coefficient as $G_n$, and the Möbius function as $mu(n)$. You've here the Wikipedia's article dedicated to the Gregory coefficients.
Using an argument of absolute convergence, and the information of previous Wikipedia for the first related series to the Gregory coefficients and the result due to Candelperger, Coppo and Young, it is obvious to prove that $$sum_{n=1}^inftymu(n)|G_n|tag{1}$$ and $$sum_{n=1}^inftyfrac{|G_n|cdot m(n)}{n}tag{2}$$ are convergent series, where $m(x)$ denotes the function $$m(x)=sum_{1leq kleq x}frac{mu(k)}{k}.tag{3}$$
Question. Have you an idea/hint to get a good approximation (the first four or six digits) of $(1)$ and $(2)$? Many thanks.
I know that there are upper bounds for the absolute value of $(3)$ for large values of $x$.
real-analysis sequences-and-series asymptotics analytic-number-theory mobius-function
$endgroup$
$begingroup$
Feel free to add some details for the approximation of one of the series, and hints for the other.
$endgroup$
– user243301
Apr 10 '18 at 14:48
add a comment |
$begingroup$
We denote for integers $ngeq 1$ the $n$th Gregory coefficient as $G_n$, and the Möbius function as $mu(n)$. You've here the Wikipedia's article dedicated to the Gregory coefficients.
Using an argument of absolute convergence, and the information of previous Wikipedia for the first related series to the Gregory coefficients and the result due to Candelperger, Coppo and Young, it is obvious to prove that $$sum_{n=1}^inftymu(n)|G_n|tag{1}$$ and $$sum_{n=1}^inftyfrac{|G_n|cdot m(n)}{n}tag{2}$$ are convergent series, where $m(x)$ denotes the function $$m(x)=sum_{1leq kleq x}frac{mu(k)}{k}.tag{3}$$
Question. Have you an idea/hint to get a good approximation (the first four or six digits) of $(1)$ and $(2)$? Many thanks.
I know that there are upper bounds for the absolute value of $(3)$ for large values of $x$.
real-analysis sequences-and-series asymptotics analytic-number-theory mobius-function
$endgroup$
We denote for integers $ngeq 1$ the $n$th Gregory coefficient as $G_n$, and the Möbius function as $mu(n)$. You've here the Wikipedia's article dedicated to the Gregory coefficients.
Using an argument of absolute convergence, and the information of previous Wikipedia for the first related series to the Gregory coefficients and the result due to Candelperger, Coppo and Young, it is obvious to prove that $$sum_{n=1}^inftymu(n)|G_n|tag{1}$$ and $$sum_{n=1}^inftyfrac{|G_n|cdot m(n)}{n}tag{2}$$ are convergent series, where $m(x)$ denotes the function $$m(x)=sum_{1leq kleq x}frac{mu(k)}{k}.tag{3}$$
Question. Have you an idea/hint to get a good approximation (the first four or six digits) of $(1)$ and $(2)$? Many thanks.
I know that there are upper bounds for the absolute value of $(3)$ for large values of $x$.
real-analysis sequences-and-series asymptotics analytic-number-theory mobius-function
real-analysis sequences-and-series asymptotics analytic-number-theory mobius-function
asked Apr 10 '18 at 14:46
user243301user243301
1
1
$begingroup$
Feel free to add some details for the approximation of one of the series, and hints for the other.
$endgroup$
– user243301
Apr 10 '18 at 14:48
add a comment |
$begingroup$
Feel free to add some details for the approximation of one of the series, and hints for the other.
$endgroup$
– user243301
Apr 10 '18 at 14:48
$begingroup$
Feel free to add some details for the approximation of one of the series, and hints for the other.
$endgroup$
– user243301
Apr 10 '18 at 14:48
$begingroup$
Feel free to add some details for the approximation of one of the series, and hints for the other.
$endgroup$
– user243301
Apr 10 '18 at 14:48
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Actually much more than "four or six digits" is reachable. I'm showing this for $(1)$ below.
Let $Xi=displaystylesum_{n=1}^{infty}mu(n)|G_n|$. Using $|G_n|=displaystyleint_{0}^{infty}frac{dx}{(1+x)^n(pi^2+ln^2x)}$, we get
$$Xi = int_{0}^{infty}FBig(frac{1}{1+x}Big)frac{dx}{pi^2+ln^2x},quadcolor{blue}{F(z)=sum_{n=1}^{infty}mu(n)z^n};$$
to apply numeric integration (say, with double-exponential method), we must have a fast enough computation of $F(z)$, especially for $z$ close to $1$. For any $xinmathbb{R}_{>0}$ and $cinmathbb{R}_{>1}$ we have
$$F(e^{-x})=frac{1}{2pi i}int_{c-iinfty}^{c+iinfty}frac{Gamma(s)}{x^szeta(s)},ds$$
which, after somewhat boring computations of residues, arrives at
$$begin{gather}color{blue}{F(e^{-x})}=-2+sum_{omegainOmega}operatorname*{Res}_{s=omega}frac{Gamma(s)}{x^szeta(s)}+sum_{n=1}^{infty}frac{2nx^{2n-1}}{(2n-1)!B_{2n}}\ {}+2sum_{n=1}^{infty}left[frac{(-1)^n(2pi x)^{2n}}{(2n)!^2zeta(2n+1)}left(frac{zeta'(2n+1)}{zeta(2n+1)}-ln 2pi x + 2(H_{2n}-gamma)right)right]end{gather}$$
with $Omega={omegainmathbb{C}setminusmathbb{R}:zeta(omega)=0}$ the set of "nontrivial zeros of Riemann zeta", and other known species ($B_{2n}$ are Bernoulli numbers, $H_{2n}$ are harmonic numbers, and $gamma$ is Euler's constant). With $x$ small, this converges much faster than the original series (despite looking that complicated — and I've checked it numerically before going further).
This allows to compute $Xi$ using, e.g., PARI/GP. I've started with
$$Xi=frac{1}{2}-int_{0}^{infty}frac{1-e^x F(e^{-x})}{pi^2+ln^2(e^x-1)}dx,$$
split $int_{0}^{infty}=int_{0}^{1}+int_{1}^{infty}$, computed the second (via PARI's $texttt{intnum}$) using the definition of $F$, and the first using the cumbersome formula above (each integral in the sum over $omegainOmega$ needs to be computed separately, due to oscillating behaviour of the integrand, and moreover, yet another substitution $x=e^{-t}$ is needed for this to keep the accuracy).
mgsDenom(z) = Pi^2 + log(z)^2;
mgsDoubleExpo(x) =
{
my (z = exp(-x));
return (exp(z - x / 2) / mgsDenom(exp(z) - 1))
};
mgsNewtonRoot(f, z) =
{
my (e, r = f(z));
until (e <= norm(r), e = norm(r); z -= r / f'(z); r = f(z));
return (z)
};
mgsRegularPartInit(rbp) =
{
my (N = 0, c = 2.0 ^ (rbp + 10)); while (1, N += 1;
c *= (Pi / N / (N + N - 1)) ^ 2; if (c < 1, break));
my (ctx = matrix(N, 3)); c = 2 * Euler + log(2 * Pi);
for (n = 1, N,
my (m = n + n, h = sum(k = 1, m, 2.0 / k));
my (zv = zeta(m + 1), zp = zeta'(m + 1));
ctx[n, 1] = n / factorial(m - 1) / bernreal(m);
ctx[n, 2] = (-1)^n * (2 * Pi)^m / factorial(m)^2 / zv;
ctx[n, 3] = h - c + zp / zv);
return (ctx)
};
mgsRegularPart(x, ctx) =
{
my (ex = exp(x), lx = log(x), rs = 0);
forstep (n = matsize(ctx)[1], 1, -1, rs = x * (ctx[n, 1]
+ x * (rs + ctx[n, 2] * (ctx[n, 3] - lx))));
return ((1 + 2 * ex * (1 - rs)) / mgsDenom(ex - 1))
};
MoebiusGregorySum() =
{
my (rbp = default(realbitprecision));
my (zzz = exp(1) - 1, eps = 0.5 ^ rbp);
my (result = 0.5 + sum(n = 2, rbp, moebius(n) * intnum(
z = zzz, [+oo, -n], (1 + z)^(-n) / mgsDenom(z))));
my (ctx = mgsRegularPartInit(rbp));
result -= intnum(x = 0, 1, mgsRegularPart(x, ctx));
my (a = 0.5 + 14.0 * I, h = 0.1 * I);
my (Pv, Cv = +oo, Nv = norm(zeta(a)));
while (1, Pv = Cv; Cv = Nv; Nv = norm(zeta(a + h));
if (Cv < Pv && Cv < Nv,
my (z = mgsNewtonRoot(zeta, a), t = imag(z), c = gamma(z) / zeta'(z));
my (rv = real(c) * intnum(x = 0, [+oo, +t * I], mgsDoubleExpo(x) * cos(t * x)));
my (iv = imag(c) * intnum(x = 0, [+oo, -t * I], mgsDoubleExpo(x) * sin(t * x)));
my (d = 2 * (rv + iv)); result += d; if (d < eps, break));
a += h);
return (result)
};
MoebiusGregorySum()
This way I get
$$color{blue}{sum_{n=1}^{infty}mu(n)|G_n|}=0.3600138625016611865745170005656289245070028602995555633ldots$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2731034%2fget-approximations-of-series-involving-cauchy-numbers-of-the-first-kind-and-the%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Actually much more than "four or six digits" is reachable. I'm showing this for $(1)$ below.
Let $Xi=displaystylesum_{n=1}^{infty}mu(n)|G_n|$. Using $|G_n|=displaystyleint_{0}^{infty}frac{dx}{(1+x)^n(pi^2+ln^2x)}$, we get
$$Xi = int_{0}^{infty}FBig(frac{1}{1+x}Big)frac{dx}{pi^2+ln^2x},quadcolor{blue}{F(z)=sum_{n=1}^{infty}mu(n)z^n};$$
to apply numeric integration (say, with double-exponential method), we must have a fast enough computation of $F(z)$, especially for $z$ close to $1$. For any $xinmathbb{R}_{>0}$ and $cinmathbb{R}_{>1}$ we have
$$F(e^{-x})=frac{1}{2pi i}int_{c-iinfty}^{c+iinfty}frac{Gamma(s)}{x^szeta(s)},ds$$
which, after somewhat boring computations of residues, arrives at
$$begin{gather}color{blue}{F(e^{-x})}=-2+sum_{omegainOmega}operatorname*{Res}_{s=omega}frac{Gamma(s)}{x^szeta(s)}+sum_{n=1}^{infty}frac{2nx^{2n-1}}{(2n-1)!B_{2n}}\ {}+2sum_{n=1}^{infty}left[frac{(-1)^n(2pi x)^{2n}}{(2n)!^2zeta(2n+1)}left(frac{zeta'(2n+1)}{zeta(2n+1)}-ln 2pi x + 2(H_{2n}-gamma)right)right]end{gather}$$
with $Omega={omegainmathbb{C}setminusmathbb{R}:zeta(omega)=0}$ the set of "nontrivial zeros of Riemann zeta", and other known species ($B_{2n}$ are Bernoulli numbers, $H_{2n}$ are harmonic numbers, and $gamma$ is Euler's constant). With $x$ small, this converges much faster than the original series (despite looking that complicated — and I've checked it numerically before going further).
This allows to compute $Xi$ using, e.g., PARI/GP. I've started with
$$Xi=frac{1}{2}-int_{0}^{infty}frac{1-e^x F(e^{-x})}{pi^2+ln^2(e^x-1)}dx,$$
split $int_{0}^{infty}=int_{0}^{1}+int_{1}^{infty}$, computed the second (via PARI's $texttt{intnum}$) using the definition of $F$, and the first using the cumbersome formula above (each integral in the sum over $omegainOmega$ needs to be computed separately, due to oscillating behaviour of the integrand, and moreover, yet another substitution $x=e^{-t}$ is needed for this to keep the accuracy).
mgsDenom(z) = Pi^2 + log(z)^2;
mgsDoubleExpo(x) =
{
my (z = exp(-x));
return (exp(z - x / 2) / mgsDenom(exp(z) - 1))
};
mgsNewtonRoot(f, z) =
{
my (e, r = f(z));
until (e <= norm(r), e = norm(r); z -= r / f'(z); r = f(z));
return (z)
};
mgsRegularPartInit(rbp) =
{
my (N = 0, c = 2.0 ^ (rbp + 10)); while (1, N += 1;
c *= (Pi / N / (N + N - 1)) ^ 2; if (c < 1, break));
my (ctx = matrix(N, 3)); c = 2 * Euler + log(2 * Pi);
for (n = 1, N,
my (m = n + n, h = sum(k = 1, m, 2.0 / k));
my (zv = zeta(m + 1), zp = zeta'(m + 1));
ctx[n, 1] = n / factorial(m - 1) / bernreal(m);
ctx[n, 2] = (-1)^n * (2 * Pi)^m / factorial(m)^2 / zv;
ctx[n, 3] = h - c + zp / zv);
return (ctx)
};
mgsRegularPart(x, ctx) =
{
my (ex = exp(x), lx = log(x), rs = 0);
forstep (n = matsize(ctx)[1], 1, -1, rs = x * (ctx[n, 1]
+ x * (rs + ctx[n, 2] * (ctx[n, 3] - lx))));
return ((1 + 2 * ex * (1 - rs)) / mgsDenom(ex - 1))
};
MoebiusGregorySum() =
{
my (rbp = default(realbitprecision));
my (zzz = exp(1) - 1, eps = 0.5 ^ rbp);
my (result = 0.5 + sum(n = 2, rbp, moebius(n) * intnum(
z = zzz, [+oo, -n], (1 + z)^(-n) / mgsDenom(z))));
my (ctx = mgsRegularPartInit(rbp));
result -= intnum(x = 0, 1, mgsRegularPart(x, ctx));
my (a = 0.5 + 14.0 * I, h = 0.1 * I);
my (Pv, Cv = +oo, Nv = norm(zeta(a)));
while (1, Pv = Cv; Cv = Nv; Nv = norm(zeta(a + h));
if (Cv < Pv && Cv < Nv,
my (z = mgsNewtonRoot(zeta, a), t = imag(z), c = gamma(z) / zeta'(z));
my (rv = real(c) * intnum(x = 0, [+oo, +t * I], mgsDoubleExpo(x) * cos(t * x)));
my (iv = imag(c) * intnum(x = 0, [+oo, -t * I], mgsDoubleExpo(x) * sin(t * x)));
my (d = 2 * (rv + iv)); result += d; if (d < eps, break));
a += h);
return (result)
};
MoebiusGregorySum()
This way I get
$$color{blue}{sum_{n=1}^{infty}mu(n)|G_n|}=0.3600138625016611865745170005656289245070028602995555633ldots$$
$endgroup$
add a comment |
$begingroup$
Actually much more than "four or six digits" is reachable. I'm showing this for $(1)$ below.
Let $Xi=displaystylesum_{n=1}^{infty}mu(n)|G_n|$. Using $|G_n|=displaystyleint_{0}^{infty}frac{dx}{(1+x)^n(pi^2+ln^2x)}$, we get
$$Xi = int_{0}^{infty}FBig(frac{1}{1+x}Big)frac{dx}{pi^2+ln^2x},quadcolor{blue}{F(z)=sum_{n=1}^{infty}mu(n)z^n};$$
to apply numeric integration (say, with double-exponential method), we must have a fast enough computation of $F(z)$, especially for $z$ close to $1$. For any $xinmathbb{R}_{>0}$ and $cinmathbb{R}_{>1}$ we have
$$F(e^{-x})=frac{1}{2pi i}int_{c-iinfty}^{c+iinfty}frac{Gamma(s)}{x^szeta(s)},ds$$
which, after somewhat boring computations of residues, arrives at
$$begin{gather}color{blue}{F(e^{-x})}=-2+sum_{omegainOmega}operatorname*{Res}_{s=omega}frac{Gamma(s)}{x^szeta(s)}+sum_{n=1}^{infty}frac{2nx^{2n-1}}{(2n-1)!B_{2n}}\ {}+2sum_{n=1}^{infty}left[frac{(-1)^n(2pi x)^{2n}}{(2n)!^2zeta(2n+1)}left(frac{zeta'(2n+1)}{zeta(2n+1)}-ln 2pi x + 2(H_{2n}-gamma)right)right]end{gather}$$
with $Omega={omegainmathbb{C}setminusmathbb{R}:zeta(omega)=0}$ the set of "nontrivial zeros of Riemann zeta", and other known species ($B_{2n}$ are Bernoulli numbers, $H_{2n}$ are harmonic numbers, and $gamma$ is Euler's constant). With $x$ small, this converges much faster than the original series (despite looking that complicated — and I've checked it numerically before going further).
This allows to compute $Xi$ using, e.g., PARI/GP. I've started with
$$Xi=frac{1}{2}-int_{0}^{infty}frac{1-e^x F(e^{-x})}{pi^2+ln^2(e^x-1)}dx,$$
split $int_{0}^{infty}=int_{0}^{1}+int_{1}^{infty}$, computed the second (via PARI's $texttt{intnum}$) using the definition of $F$, and the first using the cumbersome formula above (each integral in the sum over $omegainOmega$ needs to be computed separately, due to oscillating behaviour of the integrand, and moreover, yet another substitution $x=e^{-t}$ is needed for this to keep the accuracy).
mgsDenom(z) = Pi^2 + log(z)^2;
mgsDoubleExpo(x) =
{
my (z = exp(-x));
return (exp(z - x / 2) / mgsDenom(exp(z) - 1))
};
mgsNewtonRoot(f, z) =
{
my (e, r = f(z));
until (e <= norm(r), e = norm(r); z -= r / f'(z); r = f(z));
return (z)
};
mgsRegularPartInit(rbp) =
{
my (N = 0, c = 2.0 ^ (rbp + 10)); while (1, N += 1;
c *= (Pi / N / (N + N - 1)) ^ 2; if (c < 1, break));
my (ctx = matrix(N, 3)); c = 2 * Euler + log(2 * Pi);
for (n = 1, N,
my (m = n + n, h = sum(k = 1, m, 2.0 / k));
my (zv = zeta(m + 1), zp = zeta'(m + 1));
ctx[n, 1] = n / factorial(m - 1) / bernreal(m);
ctx[n, 2] = (-1)^n * (2 * Pi)^m / factorial(m)^2 / zv;
ctx[n, 3] = h - c + zp / zv);
return (ctx)
};
mgsRegularPart(x, ctx) =
{
my (ex = exp(x), lx = log(x), rs = 0);
forstep (n = matsize(ctx)[1], 1, -1, rs = x * (ctx[n, 1]
+ x * (rs + ctx[n, 2] * (ctx[n, 3] - lx))));
return ((1 + 2 * ex * (1 - rs)) / mgsDenom(ex - 1))
};
MoebiusGregorySum() =
{
my (rbp = default(realbitprecision));
my (zzz = exp(1) - 1, eps = 0.5 ^ rbp);
my (result = 0.5 + sum(n = 2, rbp, moebius(n) * intnum(
z = zzz, [+oo, -n], (1 + z)^(-n) / mgsDenom(z))));
my (ctx = mgsRegularPartInit(rbp));
result -= intnum(x = 0, 1, mgsRegularPart(x, ctx));
my (a = 0.5 + 14.0 * I, h = 0.1 * I);
my (Pv, Cv = +oo, Nv = norm(zeta(a)));
while (1, Pv = Cv; Cv = Nv; Nv = norm(zeta(a + h));
if (Cv < Pv && Cv < Nv,
my (z = mgsNewtonRoot(zeta, a), t = imag(z), c = gamma(z) / zeta'(z));
my (rv = real(c) * intnum(x = 0, [+oo, +t * I], mgsDoubleExpo(x) * cos(t * x)));
my (iv = imag(c) * intnum(x = 0, [+oo, -t * I], mgsDoubleExpo(x) * sin(t * x)));
my (d = 2 * (rv + iv)); result += d; if (d < eps, break));
a += h);
return (result)
};
MoebiusGregorySum()
This way I get
$$color{blue}{sum_{n=1}^{infty}mu(n)|G_n|}=0.3600138625016611865745170005656289245070028602995555633ldots$$
$endgroup$
add a comment |
$begingroup$
Actually much more than "four or six digits" is reachable. I'm showing this for $(1)$ below.
Let $Xi=displaystylesum_{n=1}^{infty}mu(n)|G_n|$. Using $|G_n|=displaystyleint_{0}^{infty}frac{dx}{(1+x)^n(pi^2+ln^2x)}$, we get
$$Xi = int_{0}^{infty}FBig(frac{1}{1+x}Big)frac{dx}{pi^2+ln^2x},quadcolor{blue}{F(z)=sum_{n=1}^{infty}mu(n)z^n};$$
to apply numeric integration (say, with double-exponential method), we must have a fast enough computation of $F(z)$, especially for $z$ close to $1$. For any $xinmathbb{R}_{>0}$ and $cinmathbb{R}_{>1}$ we have
$$F(e^{-x})=frac{1}{2pi i}int_{c-iinfty}^{c+iinfty}frac{Gamma(s)}{x^szeta(s)},ds$$
which, after somewhat boring computations of residues, arrives at
$$begin{gather}color{blue}{F(e^{-x})}=-2+sum_{omegainOmega}operatorname*{Res}_{s=omega}frac{Gamma(s)}{x^szeta(s)}+sum_{n=1}^{infty}frac{2nx^{2n-1}}{(2n-1)!B_{2n}}\ {}+2sum_{n=1}^{infty}left[frac{(-1)^n(2pi x)^{2n}}{(2n)!^2zeta(2n+1)}left(frac{zeta'(2n+1)}{zeta(2n+1)}-ln 2pi x + 2(H_{2n}-gamma)right)right]end{gather}$$
with $Omega={omegainmathbb{C}setminusmathbb{R}:zeta(omega)=0}$ the set of "nontrivial zeros of Riemann zeta", and other known species ($B_{2n}$ are Bernoulli numbers, $H_{2n}$ are harmonic numbers, and $gamma$ is Euler's constant). With $x$ small, this converges much faster than the original series (despite looking that complicated — and I've checked it numerically before going further).
This allows to compute $Xi$ using, e.g., PARI/GP. I've started with
$$Xi=frac{1}{2}-int_{0}^{infty}frac{1-e^x F(e^{-x})}{pi^2+ln^2(e^x-1)}dx,$$
split $int_{0}^{infty}=int_{0}^{1}+int_{1}^{infty}$, computed the second (via PARI's $texttt{intnum}$) using the definition of $F$, and the first using the cumbersome formula above (each integral in the sum over $omegainOmega$ needs to be computed separately, due to oscillating behaviour of the integrand, and moreover, yet another substitution $x=e^{-t}$ is needed for this to keep the accuracy).
mgsDenom(z) = Pi^2 + log(z)^2;
mgsDoubleExpo(x) =
{
my (z = exp(-x));
return (exp(z - x / 2) / mgsDenom(exp(z) - 1))
};
mgsNewtonRoot(f, z) =
{
my (e, r = f(z));
until (e <= norm(r), e = norm(r); z -= r / f'(z); r = f(z));
return (z)
};
mgsRegularPartInit(rbp) =
{
my (N = 0, c = 2.0 ^ (rbp + 10)); while (1, N += 1;
c *= (Pi / N / (N + N - 1)) ^ 2; if (c < 1, break));
my (ctx = matrix(N, 3)); c = 2 * Euler + log(2 * Pi);
for (n = 1, N,
my (m = n + n, h = sum(k = 1, m, 2.0 / k));
my (zv = zeta(m + 1), zp = zeta'(m + 1));
ctx[n, 1] = n / factorial(m - 1) / bernreal(m);
ctx[n, 2] = (-1)^n * (2 * Pi)^m / factorial(m)^2 / zv;
ctx[n, 3] = h - c + zp / zv);
return (ctx)
};
mgsRegularPart(x, ctx) =
{
my (ex = exp(x), lx = log(x), rs = 0);
forstep (n = matsize(ctx)[1], 1, -1, rs = x * (ctx[n, 1]
+ x * (rs + ctx[n, 2] * (ctx[n, 3] - lx))));
return ((1 + 2 * ex * (1 - rs)) / mgsDenom(ex - 1))
};
MoebiusGregorySum() =
{
my (rbp = default(realbitprecision));
my (zzz = exp(1) - 1, eps = 0.5 ^ rbp);
my (result = 0.5 + sum(n = 2, rbp, moebius(n) * intnum(
z = zzz, [+oo, -n], (1 + z)^(-n) / mgsDenom(z))));
my (ctx = mgsRegularPartInit(rbp));
result -= intnum(x = 0, 1, mgsRegularPart(x, ctx));
my (a = 0.5 + 14.0 * I, h = 0.1 * I);
my (Pv, Cv = +oo, Nv = norm(zeta(a)));
while (1, Pv = Cv; Cv = Nv; Nv = norm(zeta(a + h));
if (Cv < Pv && Cv < Nv,
my (z = mgsNewtonRoot(zeta, a), t = imag(z), c = gamma(z) / zeta'(z));
my (rv = real(c) * intnum(x = 0, [+oo, +t * I], mgsDoubleExpo(x) * cos(t * x)));
my (iv = imag(c) * intnum(x = 0, [+oo, -t * I], mgsDoubleExpo(x) * sin(t * x)));
my (d = 2 * (rv + iv)); result += d; if (d < eps, break));
a += h);
return (result)
};
MoebiusGregorySum()
This way I get
$$color{blue}{sum_{n=1}^{infty}mu(n)|G_n|}=0.3600138625016611865745170005656289245070028602995555633ldots$$
$endgroup$
Actually much more than "four or six digits" is reachable. I'm showing this for $(1)$ below.
Let $Xi=displaystylesum_{n=1}^{infty}mu(n)|G_n|$. Using $|G_n|=displaystyleint_{0}^{infty}frac{dx}{(1+x)^n(pi^2+ln^2x)}$, we get
$$Xi = int_{0}^{infty}FBig(frac{1}{1+x}Big)frac{dx}{pi^2+ln^2x},quadcolor{blue}{F(z)=sum_{n=1}^{infty}mu(n)z^n};$$
to apply numeric integration (say, with double-exponential method), we must have a fast enough computation of $F(z)$, especially for $z$ close to $1$. For any $xinmathbb{R}_{>0}$ and $cinmathbb{R}_{>1}$ we have
$$F(e^{-x})=frac{1}{2pi i}int_{c-iinfty}^{c+iinfty}frac{Gamma(s)}{x^szeta(s)},ds$$
which, after somewhat boring computations of residues, arrives at
$$begin{gather}color{blue}{F(e^{-x})}=-2+sum_{omegainOmega}operatorname*{Res}_{s=omega}frac{Gamma(s)}{x^szeta(s)}+sum_{n=1}^{infty}frac{2nx^{2n-1}}{(2n-1)!B_{2n}}\ {}+2sum_{n=1}^{infty}left[frac{(-1)^n(2pi x)^{2n}}{(2n)!^2zeta(2n+1)}left(frac{zeta'(2n+1)}{zeta(2n+1)}-ln 2pi x + 2(H_{2n}-gamma)right)right]end{gather}$$
with $Omega={omegainmathbb{C}setminusmathbb{R}:zeta(omega)=0}$ the set of "nontrivial zeros of Riemann zeta", and other known species ($B_{2n}$ are Bernoulli numbers, $H_{2n}$ are harmonic numbers, and $gamma$ is Euler's constant). With $x$ small, this converges much faster than the original series (despite looking that complicated — and I've checked it numerically before going further).
This allows to compute $Xi$ using, e.g., PARI/GP. I've started with
$$Xi=frac{1}{2}-int_{0}^{infty}frac{1-e^x F(e^{-x})}{pi^2+ln^2(e^x-1)}dx,$$
split $int_{0}^{infty}=int_{0}^{1}+int_{1}^{infty}$, computed the second (via PARI's $texttt{intnum}$) using the definition of $F$, and the first using the cumbersome formula above (each integral in the sum over $omegainOmega$ needs to be computed separately, due to oscillating behaviour of the integrand, and moreover, yet another substitution $x=e^{-t}$ is needed for this to keep the accuracy).
mgsDenom(z) = Pi^2 + log(z)^2;
mgsDoubleExpo(x) =
{
my (z = exp(-x));
return (exp(z - x / 2) / mgsDenom(exp(z) - 1))
};
mgsNewtonRoot(f, z) =
{
my (e, r = f(z));
until (e <= norm(r), e = norm(r); z -= r / f'(z); r = f(z));
return (z)
};
mgsRegularPartInit(rbp) =
{
my (N = 0, c = 2.0 ^ (rbp + 10)); while (1, N += 1;
c *= (Pi / N / (N + N - 1)) ^ 2; if (c < 1, break));
my (ctx = matrix(N, 3)); c = 2 * Euler + log(2 * Pi);
for (n = 1, N,
my (m = n + n, h = sum(k = 1, m, 2.0 / k));
my (zv = zeta(m + 1), zp = zeta'(m + 1));
ctx[n, 1] = n / factorial(m - 1) / bernreal(m);
ctx[n, 2] = (-1)^n * (2 * Pi)^m / factorial(m)^2 / zv;
ctx[n, 3] = h - c + zp / zv);
return (ctx)
};
mgsRegularPart(x, ctx) =
{
my (ex = exp(x), lx = log(x), rs = 0);
forstep (n = matsize(ctx)[1], 1, -1, rs = x * (ctx[n, 1]
+ x * (rs + ctx[n, 2] * (ctx[n, 3] - lx))));
return ((1 + 2 * ex * (1 - rs)) / mgsDenom(ex - 1))
};
MoebiusGregorySum() =
{
my (rbp = default(realbitprecision));
my (zzz = exp(1) - 1, eps = 0.5 ^ rbp);
my (result = 0.5 + sum(n = 2, rbp, moebius(n) * intnum(
z = zzz, [+oo, -n], (1 + z)^(-n) / mgsDenom(z))));
my (ctx = mgsRegularPartInit(rbp));
result -= intnum(x = 0, 1, mgsRegularPart(x, ctx));
my (a = 0.5 + 14.0 * I, h = 0.1 * I);
my (Pv, Cv = +oo, Nv = norm(zeta(a)));
while (1, Pv = Cv; Cv = Nv; Nv = norm(zeta(a + h));
if (Cv < Pv && Cv < Nv,
my (z = mgsNewtonRoot(zeta, a), t = imag(z), c = gamma(z) / zeta'(z));
my (rv = real(c) * intnum(x = 0, [+oo, +t * I], mgsDoubleExpo(x) * cos(t * x)));
my (iv = imag(c) * intnum(x = 0, [+oo, -t * I], mgsDoubleExpo(x) * sin(t * x)));
my (d = 2 * (rv + iv)); result += d; if (d < eps, break));
a += h);
return (result)
};
MoebiusGregorySum()
This way I get
$$color{blue}{sum_{n=1}^{infty}mu(n)|G_n|}=0.3600138625016611865745170005656289245070028602995555633ldots$$
edited Nov 29 '18 at 6:16
answered Nov 29 '18 at 0:21
metamorphymetamorphy
3,6821621
3,6821621
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2731034%2fget-approximations-of-series-involving-cauchy-numbers-of-the-first-kind-and-the%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Feel free to add some details for the approximation of one of the series, and hints for the other.
$endgroup$
– user243301
Apr 10 '18 at 14:48