Get approximations of series involving Cauchy numbers of the first kind and the Möbius function












5












$begingroup$


We denote for integers $ngeq 1$ the $n$th Gregory coefficient as $G_n$, and the Möbius function as $mu(n)$. You've here the Wikipedia's article dedicated to the Gregory coefficients.



Using an argument of absolute convergence, and the information of previous Wikipedia for the first related series to the Gregory coefficients and the result due to Candelperger, Coppo and Young, it is obvious to prove that $$sum_{n=1}^inftymu(n)|G_n|tag{1}$$ and $$sum_{n=1}^inftyfrac{|G_n|cdot m(n)}{n}tag{2}$$ are convergent series, where $m(x)$ denotes the function $$m(x)=sum_{1leq kleq x}frac{mu(k)}{k}.tag{3}$$




Question. Have you an idea/hint to get a good approximation (the first four or six digits) of $(1)$ and $(2)$? Many thanks.




I know that there are upper bounds for the absolute value of $(3)$ for large values of $x$.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Feel free to add some details for the approximation of one of the series, and hints for the other.
    $endgroup$
    – user243301
    Apr 10 '18 at 14:48


















5












$begingroup$


We denote for integers $ngeq 1$ the $n$th Gregory coefficient as $G_n$, and the Möbius function as $mu(n)$. You've here the Wikipedia's article dedicated to the Gregory coefficients.



Using an argument of absolute convergence, and the information of previous Wikipedia for the first related series to the Gregory coefficients and the result due to Candelperger, Coppo and Young, it is obvious to prove that $$sum_{n=1}^inftymu(n)|G_n|tag{1}$$ and $$sum_{n=1}^inftyfrac{|G_n|cdot m(n)}{n}tag{2}$$ are convergent series, where $m(x)$ denotes the function $$m(x)=sum_{1leq kleq x}frac{mu(k)}{k}.tag{3}$$




Question. Have you an idea/hint to get a good approximation (the first four or six digits) of $(1)$ and $(2)$? Many thanks.




I know that there are upper bounds for the absolute value of $(3)$ for large values of $x$.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Feel free to add some details for the approximation of one of the series, and hints for the other.
    $endgroup$
    – user243301
    Apr 10 '18 at 14:48
















5












5








5


1



$begingroup$


We denote for integers $ngeq 1$ the $n$th Gregory coefficient as $G_n$, and the Möbius function as $mu(n)$. You've here the Wikipedia's article dedicated to the Gregory coefficients.



Using an argument of absolute convergence, and the information of previous Wikipedia for the first related series to the Gregory coefficients and the result due to Candelperger, Coppo and Young, it is obvious to prove that $$sum_{n=1}^inftymu(n)|G_n|tag{1}$$ and $$sum_{n=1}^inftyfrac{|G_n|cdot m(n)}{n}tag{2}$$ are convergent series, where $m(x)$ denotes the function $$m(x)=sum_{1leq kleq x}frac{mu(k)}{k}.tag{3}$$




Question. Have you an idea/hint to get a good approximation (the first four or six digits) of $(1)$ and $(2)$? Many thanks.




I know that there are upper bounds for the absolute value of $(3)$ for large values of $x$.










share|cite|improve this question









$endgroup$




We denote for integers $ngeq 1$ the $n$th Gregory coefficient as $G_n$, and the Möbius function as $mu(n)$. You've here the Wikipedia's article dedicated to the Gregory coefficients.



Using an argument of absolute convergence, and the information of previous Wikipedia for the first related series to the Gregory coefficients and the result due to Candelperger, Coppo and Young, it is obvious to prove that $$sum_{n=1}^inftymu(n)|G_n|tag{1}$$ and $$sum_{n=1}^inftyfrac{|G_n|cdot m(n)}{n}tag{2}$$ are convergent series, where $m(x)$ denotes the function $$m(x)=sum_{1leq kleq x}frac{mu(k)}{k}.tag{3}$$




Question. Have you an idea/hint to get a good approximation (the first four or six digits) of $(1)$ and $(2)$? Many thanks.




I know that there are upper bounds for the absolute value of $(3)$ for large values of $x$.







real-analysis sequences-and-series asymptotics analytic-number-theory mobius-function






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Apr 10 '18 at 14:46









user243301user243301

1




1












  • $begingroup$
    Feel free to add some details for the approximation of one of the series, and hints for the other.
    $endgroup$
    – user243301
    Apr 10 '18 at 14:48




















  • $begingroup$
    Feel free to add some details for the approximation of one of the series, and hints for the other.
    $endgroup$
    – user243301
    Apr 10 '18 at 14:48


















$begingroup$
Feel free to add some details for the approximation of one of the series, and hints for the other.
$endgroup$
– user243301
Apr 10 '18 at 14:48






$begingroup$
Feel free to add some details for the approximation of one of the series, and hints for the other.
$endgroup$
– user243301
Apr 10 '18 at 14:48












1 Answer
1






active

oldest

votes


















0












$begingroup$

Actually much more than "four or six digits" is reachable. I'm showing this for $(1)$ below.



Let $Xi=displaystylesum_{n=1}^{infty}mu(n)|G_n|$. Using $|G_n|=displaystyleint_{0}^{infty}frac{dx}{(1+x)^n(pi^2+ln^2x)}$, we get
$$Xi = int_{0}^{infty}FBig(frac{1}{1+x}Big)frac{dx}{pi^2+ln^2x},quadcolor{blue}{F(z)=sum_{n=1}^{infty}mu(n)z^n};$$
to apply numeric integration (say, with double-exponential method), we must have a fast enough computation of $F(z)$, especially for $z$ close to $1$. For any $xinmathbb{R}_{>0}$ and $cinmathbb{R}_{>1}$ we have
$$F(e^{-x})=frac{1}{2pi i}int_{c-iinfty}^{c+iinfty}frac{Gamma(s)}{x^szeta(s)},ds$$
which, after somewhat boring computations of residues, arrives at
$$begin{gather}color{blue}{F(e^{-x})}=-2+sum_{omegainOmega}operatorname*{Res}_{s=omega}frac{Gamma(s)}{x^szeta(s)}+sum_{n=1}^{infty}frac{2nx^{2n-1}}{(2n-1)!B_{2n}}\ {}+2sum_{n=1}^{infty}left[frac{(-1)^n(2pi x)^{2n}}{(2n)!^2zeta(2n+1)}left(frac{zeta'(2n+1)}{zeta(2n+1)}-ln 2pi x + 2(H_{2n}-gamma)right)right]end{gather}$$
with $Omega={omegainmathbb{C}setminusmathbb{R}:zeta(omega)=0}$ the set of "nontrivial zeros of Riemann zeta", and other known species ($B_{2n}$ are Bernoulli numbers, $H_{2n}$ are harmonic numbers, and $gamma$ is Euler's constant). With $x$ small, this converges much faster than the original series (despite looking that complicated — and I've checked it numerically before going further).



This allows to compute $Xi$ using, e.g., PARI/GP. I've started with
$$Xi=frac{1}{2}-int_{0}^{infty}frac{1-e^x F(e^{-x})}{pi^2+ln^2(e^x-1)}dx,$$
split $int_{0}^{infty}=int_{0}^{1}+int_{1}^{infty}$, computed the second (via PARI's $texttt{intnum}$) using the definition of $F$, and the first using the cumbersome formula above (each integral in the sum over $omegainOmega$ needs to be computed separately, due to oscillating behaviour of the integrand, and moreover, yet another substitution $x=e^{-t}$ is needed for this to keep the accuracy).



mgsDenom(z) = Pi^2 + log(z)^2;
mgsDoubleExpo(x) =
{
my (z = exp(-x));
return (exp(z - x / 2) / mgsDenom(exp(z) - 1))
};
mgsNewtonRoot(f, z) =
{
my (e, r = f(z));
until (e <= norm(r), e = norm(r); z -= r / f'(z); r = f(z));
return (z)
};
mgsRegularPartInit(rbp) =
{
my (N = 0, c = 2.0 ^ (rbp + 10)); while (1, N += 1;
c *= (Pi / N / (N + N - 1)) ^ 2; if (c < 1, break));
my (ctx = matrix(N, 3)); c = 2 * Euler + log(2 * Pi);
for (n = 1, N,
my (m = n + n, h = sum(k = 1, m, 2.0 / k));
my (zv = zeta(m + 1), zp = zeta'(m + 1));
ctx[n, 1] = n / factorial(m - 1) / bernreal(m);
ctx[n, 2] = (-1)^n * (2 * Pi)^m / factorial(m)^2 / zv;
ctx[n, 3] = h - c + zp / zv);
return (ctx)
};
mgsRegularPart(x, ctx) =
{
my (ex = exp(x), lx = log(x), rs = 0);
forstep (n = matsize(ctx)[1], 1, -1, rs = x * (ctx[n, 1]
+ x * (rs + ctx[n, 2] * (ctx[n, 3] - lx))));
return ((1 + 2 * ex * (1 - rs)) / mgsDenom(ex - 1))
};
MoebiusGregorySum() =
{
my (rbp = default(realbitprecision));
my (zzz = exp(1) - 1, eps = 0.5 ^ rbp);
my (result = 0.5 + sum(n = 2, rbp, moebius(n) * intnum(
z = zzz, [+oo, -n], (1 + z)^(-n) / mgsDenom(z))));
my (ctx = mgsRegularPartInit(rbp));
result -= intnum(x = 0, 1, mgsRegularPart(x, ctx));
my (a = 0.5 + 14.0 * I, h = 0.1 * I);
my (Pv, Cv = +oo, Nv = norm(zeta(a)));
while (1, Pv = Cv; Cv = Nv; Nv = norm(zeta(a + h));
if (Cv < Pv && Cv < Nv,
my (z = mgsNewtonRoot(zeta, a), t = imag(z), c = gamma(z) / zeta'(z));
my (rv = real(c) * intnum(x = 0, [+oo, +t * I], mgsDoubleExpo(x) * cos(t * x)));
my (iv = imag(c) * intnum(x = 0, [+oo, -t * I], mgsDoubleExpo(x) * sin(t * x)));
my (d = 2 * (rv + iv)); result += d; if (d < eps, break));
a += h);
return (result)
};
MoebiusGregorySum()


This way I get
$$color{blue}{sum_{n=1}^{infty}mu(n)|G_n|}=0.3600138625016611865745170005656289245070028602995555633ldots$$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2731034%2fget-approximations-of-series-involving-cauchy-numbers-of-the-first-kind-and-the%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Actually much more than "four or six digits" is reachable. I'm showing this for $(1)$ below.



    Let $Xi=displaystylesum_{n=1}^{infty}mu(n)|G_n|$. Using $|G_n|=displaystyleint_{0}^{infty}frac{dx}{(1+x)^n(pi^2+ln^2x)}$, we get
    $$Xi = int_{0}^{infty}FBig(frac{1}{1+x}Big)frac{dx}{pi^2+ln^2x},quadcolor{blue}{F(z)=sum_{n=1}^{infty}mu(n)z^n};$$
    to apply numeric integration (say, with double-exponential method), we must have a fast enough computation of $F(z)$, especially for $z$ close to $1$. For any $xinmathbb{R}_{>0}$ and $cinmathbb{R}_{>1}$ we have
    $$F(e^{-x})=frac{1}{2pi i}int_{c-iinfty}^{c+iinfty}frac{Gamma(s)}{x^szeta(s)},ds$$
    which, after somewhat boring computations of residues, arrives at
    $$begin{gather}color{blue}{F(e^{-x})}=-2+sum_{omegainOmega}operatorname*{Res}_{s=omega}frac{Gamma(s)}{x^szeta(s)}+sum_{n=1}^{infty}frac{2nx^{2n-1}}{(2n-1)!B_{2n}}\ {}+2sum_{n=1}^{infty}left[frac{(-1)^n(2pi x)^{2n}}{(2n)!^2zeta(2n+1)}left(frac{zeta'(2n+1)}{zeta(2n+1)}-ln 2pi x + 2(H_{2n}-gamma)right)right]end{gather}$$
    with $Omega={omegainmathbb{C}setminusmathbb{R}:zeta(omega)=0}$ the set of "nontrivial zeros of Riemann zeta", and other known species ($B_{2n}$ are Bernoulli numbers, $H_{2n}$ are harmonic numbers, and $gamma$ is Euler's constant). With $x$ small, this converges much faster than the original series (despite looking that complicated — and I've checked it numerically before going further).



    This allows to compute $Xi$ using, e.g., PARI/GP. I've started with
    $$Xi=frac{1}{2}-int_{0}^{infty}frac{1-e^x F(e^{-x})}{pi^2+ln^2(e^x-1)}dx,$$
    split $int_{0}^{infty}=int_{0}^{1}+int_{1}^{infty}$, computed the second (via PARI's $texttt{intnum}$) using the definition of $F$, and the first using the cumbersome formula above (each integral in the sum over $omegainOmega$ needs to be computed separately, due to oscillating behaviour of the integrand, and moreover, yet another substitution $x=e^{-t}$ is needed for this to keep the accuracy).



    mgsDenom(z) = Pi^2 + log(z)^2;
    mgsDoubleExpo(x) =
    {
    my (z = exp(-x));
    return (exp(z - x / 2) / mgsDenom(exp(z) - 1))
    };
    mgsNewtonRoot(f, z) =
    {
    my (e, r = f(z));
    until (e <= norm(r), e = norm(r); z -= r / f'(z); r = f(z));
    return (z)
    };
    mgsRegularPartInit(rbp) =
    {
    my (N = 0, c = 2.0 ^ (rbp + 10)); while (1, N += 1;
    c *= (Pi / N / (N + N - 1)) ^ 2; if (c < 1, break));
    my (ctx = matrix(N, 3)); c = 2 * Euler + log(2 * Pi);
    for (n = 1, N,
    my (m = n + n, h = sum(k = 1, m, 2.0 / k));
    my (zv = zeta(m + 1), zp = zeta'(m + 1));
    ctx[n, 1] = n / factorial(m - 1) / bernreal(m);
    ctx[n, 2] = (-1)^n * (2 * Pi)^m / factorial(m)^2 / zv;
    ctx[n, 3] = h - c + zp / zv);
    return (ctx)
    };
    mgsRegularPart(x, ctx) =
    {
    my (ex = exp(x), lx = log(x), rs = 0);
    forstep (n = matsize(ctx)[1], 1, -1, rs = x * (ctx[n, 1]
    + x * (rs + ctx[n, 2] * (ctx[n, 3] - lx))));
    return ((1 + 2 * ex * (1 - rs)) / mgsDenom(ex - 1))
    };
    MoebiusGregorySum() =
    {
    my (rbp = default(realbitprecision));
    my (zzz = exp(1) - 1, eps = 0.5 ^ rbp);
    my (result = 0.5 + sum(n = 2, rbp, moebius(n) * intnum(
    z = zzz, [+oo, -n], (1 + z)^(-n) / mgsDenom(z))));
    my (ctx = mgsRegularPartInit(rbp));
    result -= intnum(x = 0, 1, mgsRegularPart(x, ctx));
    my (a = 0.5 + 14.0 * I, h = 0.1 * I);
    my (Pv, Cv = +oo, Nv = norm(zeta(a)));
    while (1, Pv = Cv; Cv = Nv; Nv = norm(zeta(a + h));
    if (Cv < Pv && Cv < Nv,
    my (z = mgsNewtonRoot(zeta, a), t = imag(z), c = gamma(z) / zeta'(z));
    my (rv = real(c) * intnum(x = 0, [+oo, +t * I], mgsDoubleExpo(x) * cos(t * x)));
    my (iv = imag(c) * intnum(x = 0, [+oo, -t * I], mgsDoubleExpo(x) * sin(t * x)));
    my (d = 2 * (rv + iv)); result += d; if (d < eps, break));
    a += h);
    return (result)
    };
    MoebiusGregorySum()


    This way I get
    $$color{blue}{sum_{n=1}^{infty}mu(n)|G_n|}=0.3600138625016611865745170005656289245070028602995555633ldots$$






    share|cite|improve this answer











    $endgroup$


















      0












      $begingroup$

      Actually much more than "four or six digits" is reachable. I'm showing this for $(1)$ below.



      Let $Xi=displaystylesum_{n=1}^{infty}mu(n)|G_n|$. Using $|G_n|=displaystyleint_{0}^{infty}frac{dx}{(1+x)^n(pi^2+ln^2x)}$, we get
      $$Xi = int_{0}^{infty}FBig(frac{1}{1+x}Big)frac{dx}{pi^2+ln^2x},quadcolor{blue}{F(z)=sum_{n=1}^{infty}mu(n)z^n};$$
      to apply numeric integration (say, with double-exponential method), we must have a fast enough computation of $F(z)$, especially for $z$ close to $1$. For any $xinmathbb{R}_{>0}$ and $cinmathbb{R}_{>1}$ we have
      $$F(e^{-x})=frac{1}{2pi i}int_{c-iinfty}^{c+iinfty}frac{Gamma(s)}{x^szeta(s)},ds$$
      which, after somewhat boring computations of residues, arrives at
      $$begin{gather}color{blue}{F(e^{-x})}=-2+sum_{omegainOmega}operatorname*{Res}_{s=omega}frac{Gamma(s)}{x^szeta(s)}+sum_{n=1}^{infty}frac{2nx^{2n-1}}{(2n-1)!B_{2n}}\ {}+2sum_{n=1}^{infty}left[frac{(-1)^n(2pi x)^{2n}}{(2n)!^2zeta(2n+1)}left(frac{zeta'(2n+1)}{zeta(2n+1)}-ln 2pi x + 2(H_{2n}-gamma)right)right]end{gather}$$
      with $Omega={omegainmathbb{C}setminusmathbb{R}:zeta(omega)=0}$ the set of "nontrivial zeros of Riemann zeta", and other known species ($B_{2n}$ are Bernoulli numbers, $H_{2n}$ are harmonic numbers, and $gamma$ is Euler's constant). With $x$ small, this converges much faster than the original series (despite looking that complicated — and I've checked it numerically before going further).



      This allows to compute $Xi$ using, e.g., PARI/GP. I've started with
      $$Xi=frac{1}{2}-int_{0}^{infty}frac{1-e^x F(e^{-x})}{pi^2+ln^2(e^x-1)}dx,$$
      split $int_{0}^{infty}=int_{0}^{1}+int_{1}^{infty}$, computed the second (via PARI's $texttt{intnum}$) using the definition of $F$, and the first using the cumbersome formula above (each integral in the sum over $omegainOmega$ needs to be computed separately, due to oscillating behaviour of the integrand, and moreover, yet another substitution $x=e^{-t}$ is needed for this to keep the accuracy).



      mgsDenom(z) = Pi^2 + log(z)^2;
      mgsDoubleExpo(x) =
      {
      my (z = exp(-x));
      return (exp(z - x / 2) / mgsDenom(exp(z) - 1))
      };
      mgsNewtonRoot(f, z) =
      {
      my (e, r = f(z));
      until (e <= norm(r), e = norm(r); z -= r / f'(z); r = f(z));
      return (z)
      };
      mgsRegularPartInit(rbp) =
      {
      my (N = 0, c = 2.0 ^ (rbp + 10)); while (1, N += 1;
      c *= (Pi / N / (N + N - 1)) ^ 2; if (c < 1, break));
      my (ctx = matrix(N, 3)); c = 2 * Euler + log(2 * Pi);
      for (n = 1, N,
      my (m = n + n, h = sum(k = 1, m, 2.0 / k));
      my (zv = zeta(m + 1), zp = zeta'(m + 1));
      ctx[n, 1] = n / factorial(m - 1) / bernreal(m);
      ctx[n, 2] = (-1)^n * (2 * Pi)^m / factorial(m)^2 / zv;
      ctx[n, 3] = h - c + zp / zv);
      return (ctx)
      };
      mgsRegularPart(x, ctx) =
      {
      my (ex = exp(x), lx = log(x), rs = 0);
      forstep (n = matsize(ctx)[1], 1, -1, rs = x * (ctx[n, 1]
      + x * (rs + ctx[n, 2] * (ctx[n, 3] - lx))));
      return ((1 + 2 * ex * (1 - rs)) / mgsDenom(ex - 1))
      };
      MoebiusGregorySum() =
      {
      my (rbp = default(realbitprecision));
      my (zzz = exp(1) - 1, eps = 0.5 ^ rbp);
      my (result = 0.5 + sum(n = 2, rbp, moebius(n) * intnum(
      z = zzz, [+oo, -n], (1 + z)^(-n) / mgsDenom(z))));
      my (ctx = mgsRegularPartInit(rbp));
      result -= intnum(x = 0, 1, mgsRegularPart(x, ctx));
      my (a = 0.5 + 14.0 * I, h = 0.1 * I);
      my (Pv, Cv = +oo, Nv = norm(zeta(a)));
      while (1, Pv = Cv; Cv = Nv; Nv = norm(zeta(a + h));
      if (Cv < Pv && Cv < Nv,
      my (z = mgsNewtonRoot(zeta, a), t = imag(z), c = gamma(z) / zeta'(z));
      my (rv = real(c) * intnum(x = 0, [+oo, +t * I], mgsDoubleExpo(x) * cos(t * x)));
      my (iv = imag(c) * intnum(x = 0, [+oo, -t * I], mgsDoubleExpo(x) * sin(t * x)));
      my (d = 2 * (rv + iv)); result += d; if (d < eps, break));
      a += h);
      return (result)
      };
      MoebiusGregorySum()


      This way I get
      $$color{blue}{sum_{n=1}^{infty}mu(n)|G_n|}=0.3600138625016611865745170005656289245070028602995555633ldots$$






      share|cite|improve this answer











      $endgroup$
















        0












        0








        0





        $begingroup$

        Actually much more than "four or six digits" is reachable. I'm showing this for $(1)$ below.



        Let $Xi=displaystylesum_{n=1}^{infty}mu(n)|G_n|$. Using $|G_n|=displaystyleint_{0}^{infty}frac{dx}{(1+x)^n(pi^2+ln^2x)}$, we get
        $$Xi = int_{0}^{infty}FBig(frac{1}{1+x}Big)frac{dx}{pi^2+ln^2x},quadcolor{blue}{F(z)=sum_{n=1}^{infty}mu(n)z^n};$$
        to apply numeric integration (say, with double-exponential method), we must have a fast enough computation of $F(z)$, especially for $z$ close to $1$. For any $xinmathbb{R}_{>0}$ and $cinmathbb{R}_{>1}$ we have
        $$F(e^{-x})=frac{1}{2pi i}int_{c-iinfty}^{c+iinfty}frac{Gamma(s)}{x^szeta(s)},ds$$
        which, after somewhat boring computations of residues, arrives at
        $$begin{gather}color{blue}{F(e^{-x})}=-2+sum_{omegainOmega}operatorname*{Res}_{s=omega}frac{Gamma(s)}{x^szeta(s)}+sum_{n=1}^{infty}frac{2nx^{2n-1}}{(2n-1)!B_{2n}}\ {}+2sum_{n=1}^{infty}left[frac{(-1)^n(2pi x)^{2n}}{(2n)!^2zeta(2n+1)}left(frac{zeta'(2n+1)}{zeta(2n+1)}-ln 2pi x + 2(H_{2n}-gamma)right)right]end{gather}$$
        with $Omega={omegainmathbb{C}setminusmathbb{R}:zeta(omega)=0}$ the set of "nontrivial zeros of Riemann zeta", and other known species ($B_{2n}$ are Bernoulli numbers, $H_{2n}$ are harmonic numbers, and $gamma$ is Euler's constant). With $x$ small, this converges much faster than the original series (despite looking that complicated — and I've checked it numerically before going further).



        This allows to compute $Xi$ using, e.g., PARI/GP. I've started with
        $$Xi=frac{1}{2}-int_{0}^{infty}frac{1-e^x F(e^{-x})}{pi^2+ln^2(e^x-1)}dx,$$
        split $int_{0}^{infty}=int_{0}^{1}+int_{1}^{infty}$, computed the second (via PARI's $texttt{intnum}$) using the definition of $F$, and the first using the cumbersome formula above (each integral in the sum over $omegainOmega$ needs to be computed separately, due to oscillating behaviour of the integrand, and moreover, yet another substitution $x=e^{-t}$ is needed for this to keep the accuracy).



        mgsDenom(z) = Pi^2 + log(z)^2;
        mgsDoubleExpo(x) =
        {
        my (z = exp(-x));
        return (exp(z - x / 2) / mgsDenom(exp(z) - 1))
        };
        mgsNewtonRoot(f, z) =
        {
        my (e, r = f(z));
        until (e <= norm(r), e = norm(r); z -= r / f'(z); r = f(z));
        return (z)
        };
        mgsRegularPartInit(rbp) =
        {
        my (N = 0, c = 2.0 ^ (rbp + 10)); while (1, N += 1;
        c *= (Pi / N / (N + N - 1)) ^ 2; if (c < 1, break));
        my (ctx = matrix(N, 3)); c = 2 * Euler + log(2 * Pi);
        for (n = 1, N,
        my (m = n + n, h = sum(k = 1, m, 2.0 / k));
        my (zv = zeta(m + 1), zp = zeta'(m + 1));
        ctx[n, 1] = n / factorial(m - 1) / bernreal(m);
        ctx[n, 2] = (-1)^n * (2 * Pi)^m / factorial(m)^2 / zv;
        ctx[n, 3] = h - c + zp / zv);
        return (ctx)
        };
        mgsRegularPart(x, ctx) =
        {
        my (ex = exp(x), lx = log(x), rs = 0);
        forstep (n = matsize(ctx)[1], 1, -1, rs = x * (ctx[n, 1]
        + x * (rs + ctx[n, 2] * (ctx[n, 3] - lx))));
        return ((1 + 2 * ex * (1 - rs)) / mgsDenom(ex - 1))
        };
        MoebiusGregorySum() =
        {
        my (rbp = default(realbitprecision));
        my (zzz = exp(1) - 1, eps = 0.5 ^ rbp);
        my (result = 0.5 + sum(n = 2, rbp, moebius(n) * intnum(
        z = zzz, [+oo, -n], (1 + z)^(-n) / mgsDenom(z))));
        my (ctx = mgsRegularPartInit(rbp));
        result -= intnum(x = 0, 1, mgsRegularPart(x, ctx));
        my (a = 0.5 + 14.0 * I, h = 0.1 * I);
        my (Pv, Cv = +oo, Nv = norm(zeta(a)));
        while (1, Pv = Cv; Cv = Nv; Nv = norm(zeta(a + h));
        if (Cv < Pv && Cv < Nv,
        my (z = mgsNewtonRoot(zeta, a), t = imag(z), c = gamma(z) / zeta'(z));
        my (rv = real(c) * intnum(x = 0, [+oo, +t * I], mgsDoubleExpo(x) * cos(t * x)));
        my (iv = imag(c) * intnum(x = 0, [+oo, -t * I], mgsDoubleExpo(x) * sin(t * x)));
        my (d = 2 * (rv + iv)); result += d; if (d < eps, break));
        a += h);
        return (result)
        };
        MoebiusGregorySum()


        This way I get
        $$color{blue}{sum_{n=1}^{infty}mu(n)|G_n|}=0.3600138625016611865745170005656289245070028602995555633ldots$$






        share|cite|improve this answer











        $endgroup$



        Actually much more than "four or six digits" is reachable. I'm showing this for $(1)$ below.



        Let $Xi=displaystylesum_{n=1}^{infty}mu(n)|G_n|$. Using $|G_n|=displaystyleint_{0}^{infty}frac{dx}{(1+x)^n(pi^2+ln^2x)}$, we get
        $$Xi = int_{0}^{infty}FBig(frac{1}{1+x}Big)frac{dx}{pi^2+ln^2x},quadcolor{blue}{F(z)=sum_{n=1}^{infty}mu(n)z^n};$$
        to apply numeric integration (say, with double-exponential method), we must have a fast enough computation of $F(z)$, especially for $z$ close to $1$. For any $xinmathbb{R}_{>0}$ and $cinmathbb{R}_{>1}$ we have
        $$F(e^{-x})=frac{1}{2pi i}int_{c-iinfty}^{c+iinfty}frac{Gamma(s)}{x^szeta(s)},ds$$
        which, after somewhat boring computations of residues, arrives at
        $$begin{gather}color{blue}{F(e^{-x})}=-2+sum_{omegainOmega}operatorname*{Res}_{s=omega}frac{Gamma(s)}{x^szeta(s)}+sum_{n=1}^{infty}frac{2nx^{2n-1}}{(2n-1)!B_{2n}}\ {}+2sum_{n=1}^{infty}left[frac{(-1)^n(2pi x)^{2n}}{(2n)!^2zeta(2n+1)}left(frac{zeta'(2n+1)}{zeta(2n+1)}-ln 2pi x + 2(H_{2n}-gamma)right)right]end{gather}$$
        with $Omega={omegainmathbb{C}setminusmathbb{R}:zeta(omega)=0}$ the set of "nontrivial zeros of Riemann zeta", and other known species ($B_{2n}$ are Bernoulli numbers, $H_{2n}$ are harmonic numbers, and $gamma$ is Euler's constant). With $x$ small, this converges much faster than the original series (despite looking that complicated — and I've checked it numerically before going further).



        This allows to compute $Xi$ using, e.g., PARI/GP. I've started with
        $$Xi=frac{1}{2}-int_{0}^{infty}frac{1-e^x F(e^{-x})}{pi^2+ln^2(e^x-1)}dx,$$
        split $int_{0}^{infty}=int_{0}^{1}+int_{1}^{infty}$, computed the second (via PARI's $texttt{intnum}$) using the definition of $F$, and the first using the cumbersome formula above (each integral in the sum over $omegainOmega$ needs to be computed separately, due to oscillating behaviour of the integrand, and moreover, yet another substitution $x=e^{-t}$ is needed for this to keep the accuracy).



        mgsDenom(z) = Pi^2 + log(z)^2;
        mgsDoubleExpo(x) =
        {
        my (z = exp(-x));
        return (exp(z - x / 2) / mgsDenom(exp(z) - 1))
        };
        mgsNewtonRoot(f, z) =
        {
        my (e, r = f(z));
        until (e <= norm(r), e = norm(r); z -= r / f'(z); r = f(z));
        return (z)
        };
        mgsRegularPartInit(rbp) =
        {
        my (N = 0, c = 2.0 ^ (rbp + 10)); while (1, N += 1;
        c *= (Pi / N / (N + N - 1)) ^ 2; if (c < 1, break));
        my (ctx = matrix(N, 3)); c = 2 * Euler + log(2 * Pi);
        for (n = 1, N,
        my (m = n + n, h = sum(k = 1, m, 2.0 / k));
        my (zv = zeta(m + 1), zp = zeta'(m + 1));
        ctx[n, 1] = n / factorial(m - 1) / bernreal(m);
        ctx[n, 2] = (-1)^n * (2 * Pi)^m / factorial(m)^2 / zv;
        ctx[n, 3] = h - c + zp / zv);
        return (ctx)
        };
        mgsRegularPart(x, ctx) =
        {
        my (ex = exp(x), lx = log(x), rs = 0);
        forstep (n = matsize(ctx)[1], 1, -1, rs = x * (ctx[n, 1]
        + x * (rs + ctx[n, 2] * (ctx[n, 3] - lx))));
        return ((1 + 2 * ex * (1 - rs)) / mgsDenom(ex - 1))
        };
        MoebiusGregorySum() =
        {
        my (rbp = default(realbitprecision));
        my (zzz = exp(1) - 1, eps = 0.5 ^ rbp);
        my (result = 0.5 + sum(n = 2, rbp, moebius(n) * intnum(
        z = zzz, [+oo, -n], (1 + z)^(-n) / mgsDenom(z))));
        my (ctx = mgsRegularPartInit(rbp));
        result -= intnum(x = 0, 1, mgsRegularPart(x, ctx));
        my (a = 0.5 + 14.0 * I, h = 0.1 * I);
        my (Pv, Cv = +oo, Nv = norm(zeta(a)));
        while (1, Pv = Cv; Cv = Nv; Nv = norm(zeta(a + h));
        if (Cv < Pv && Cv < Nv,
        my (z = mgsNewtonRoot(zeta, a), t = imag(z), c = gamma(z) / zeta'(z));
        my (rv = real(c) * intnum(x = 0, [+oo, +t * I], mgsDoubleExpo(x) * cos(t * x)));
        my (iv = imag(c) * intnum(x = 0, [+oo, -t * I], mgsDoubleExpo(x) * sin(t * x)));
        my (d = 2 * (rv + iv)); result += d; if (d < eps, break));
        a += h);
        return (result)
        };
        MoebiusGregorySum()


        This way I get
        $$color{blue}{sum_{n=1}^{infty}mu(n)|G_n|}=0.3600138625016611865745170005656289245070028602995555633ldots$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Nov 29 '18 at 6:16

























        answered Nov 29 '18 at 0:21









        metamorphymetamorphy

        3,6821621




        3,6821621






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2731034%2fget-approximations-of-series-involving-cauchy-numbers-of-the-first-kind-and-the%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            Puebla de Zaragoza

            Musa