Polar laplace equation












-1












$begingroup$


I am really struggling to solve this, the initial condition $u(a,theta)=0$ keeps throwing me off.



enter image description here










share|cite|improve this question











$endgroup$

















    -1












    $begingroup$


    I am really struggling to solve this, the initial condition $u(a,theta)=0$ keeps throwing me off.



    enter image description here










    share|cite|improve this question











    $endgroup$















      -1












      -1








      -1





      $begingroup$


      I am really struggling to solve this, the initial condition $u(a,theta)=0$ keeps throwing me off.



      enter image description here










      share|cite|improve this question











      $endgroup$




      I am really struggling to solve this, the initial condition $u(a,theta)=0$ keeps throwing me off.



      enter image description here







      ordinary-differential-equations pde






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 30 '18 at 18:29









      caverac

      14.4k31130




      14.4k31130










      asked Nov 30 '18 at 18:27









      Jack LeitchJack Leitch

      1




      1






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Let $u(r,theta)=f(r)g(theta)$. Then the Laplace equation becomes
          $$ f''(r)g(theta)+frac1r f'(r)g(theta)+frac1{r^2}f(r)g''(theta)=0$$
          from which one has
          $$ frac{f''(r)+frac1r f'(r)}{f(r)}=-frac{g''(theta)}{g(theta)}. $$
          Let
          $$ frac{f''(r)+frac1r f'(r)}{f(r)}=K tag{1} $$
          and
          $$-frac{g''(theta)}{g(theta)}=K. tag{2} $$
          Now solving (1) and (2) gives
          $$ f(r)=c_1cosh(sqrt Kr)+c_2 isinh(sqrt{K}r), g(theta)=d_1cos(sqrt Ktheta)+d_2sin(sqrt Ktheta). $$
          So
          $$ u(r,theta)=bigg[c_1cosh(sqrt Kr)+c_2 isinh(sqrt{K}r)bigg] bigg[d_1cos(sqrt Ktheta)+d_2sin(sqrt Ktheta)bigg]. $$
          Let $u(r,0)=u(r,2pi)=0$ and then one has
          $$ d_1=0, K=frac{n^2}{4},n=1,2,3cdots. $$
          You can choose $K=frac14$ or $K=1$. Let $u(a,theta)=0,u(b,theta)=f(theta)$ and I think you can determine $C_1,C_2$ which is not very hard.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020452%2fpolar-laplace-equation%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            Let $u(r,theta)=f(r)g(theta)$. Then the Laplace equation becomes
            $$ f''(r)g(theta)+frac1r f'(r)g(theta)+frac1{r^2}f(r)g''(theta)=0$$
            from which one has
            $$ frac{f''(r)+frac1r f'(r)}{f(r)}=-frac{g''(theta)}{g(theta)}. $$
            Let
            $$ frac{f''(r)+frac1r f'(r)}{f(r)}=K tag{1} $$
            and
            $$-frac{g''(theta)}{g(theta)}=K. tag{2} $$
            Now solving (1) and (2) gives
            $$ f(r)=c_1cosh(sqrt Kr)+c_2 isinh(sqrt{K}r), g(theta)=d_1cos(sqrt Ktheta)+d_2sin(sqrt Ktheta). $$
            So
            $$ u(r,theta)=bigg[c_1cosh(sqrt Kr)+c_2 isinh(sqrt{K}r)bigg] bigg[d_1cos(sqrt Ktheta)+d_2sin(sqrt Ktheta)bigg]. $$
            Let $u(r,0)=u(r,2pi)=0$ and then one has
            $$ d_1=0, K=frac{n^2}{4},n=1,2,3cdots. $$
            You can choose $K=frac14$ or $K=1$. Let $u(a,theta)=0,u(b,theta)=f(theta)$ and I think you can determine $C_1,C_2$ which is not very hard.






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              Let $u(r,theta)=f(r)g(theta)$. Then the Laplace equation becomes
              $$ f''(r)g(theta)+frac1r f'(r)g(theta)+frac1{r^2}f(r)g''(theta)=0$$
              from which one has
              $$ frac{f''(r)+frac1r f'(r)}{f(r)}=-frac{g''(theta)}{g(theta)}. $$
              Let
              $$ frac{f''(r)+frac1r f'(r)}{f(r)}=K tag{1} $$
              and
              $$-frac{g''(theta)}{g(theta)}=K. tag{2} $$
              Now solving (1) and (2) gives
              $$ f(r)=c_1cosh(sqrt Kr)+c_2 isinh(sqrt{K}r), g(theta)=d_1cos(sqrt Ktheta)+d_2sin(sqrt Ktheta). $$
              So
              $$ u(r,theta)=bigg[c_1cosh(sqrt Kr)+c_2 isinh(sqrt{K}r)bigg] bigg[d_1cos(sqrt Ktheta)+d_2sin(sqrt Ktheta)bigg]. $$
              Let $u(r,0)=u(r,2pi)=0$ and then one has
              $$ d_1=0, K=frac{n^2}{4},n=1,2,3cdots. $$
              You can choose $K=frac14$ or $K=1$. Let $u(a,theta)=0,u(b,theta)=f(theta)$ and I think you can determine $C_1,C_2$ which is not very hard.






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                Let $u(r,theta)=f(r)g(theta)$. Then the Laplace equation becomes
                $$ f''(r)g(theta)+frac1r f'(r)g(theta)+frac1{r^2}f(r)g''(theta)=0$$
                from which one has
                $$ frac{f''(r)+frac1r f'(r)}{f(r)}=-frac{g''(theta)}{g(theta)}. $$
                Let
                $$ frac{f''(r)+frac1r f'(r)}{f(r)}=K tag{1} $$
                and
                $$-frac{g''(theta)}{g(theta)}=K. tag{2} $$
                Now solving (1) and (2) gives
                $$ f(r)=c_1cosh(sqrt Kr)+c_2 isinh(sqrt{K}r), g(theta)=d_1cos(sqrt Ktheta)+d_2sin(sqrt Ktheta). $$
                So
                $$ u(r,theta)=bigg[c_1cosh(sqrt Kr)+c_2 isinh(sqrt{K}r)bigg] bigg[d_1cos(sqrt Ktheta)+d_2sin(sqrt Ktheta)bigg]. $$
                Let $u(r,0)=u(r,2pi)=0$ and then one has
                $$ d_1=0, K=frac{n^2}{4},n=1,2,3cdots. $$
                You can choose $K=frac14$ or $K=1$. Let $u(a,theta)=0,u(b,theta)=f(theta)$ and I think you can determine $C_1,C_2$ which is not very hard.






                share|cite|improve this answer









                $endgroup$



                Let $u(r,theta)=f(r)g(theta)$. Then the Laplace equation becomes
                $$ f''(r)g(theta)+frac1r f'(r)g(theta)+frac1{r^2}f(r)g''(theta)=0$$
                from which one has
                $$ frac{f''(r)+frac1r f'(r)}{f(r)}=-frac{g''(theta)}{g(theta)}. $$
                Let
                $$ frac{f''(r)+frac1r f'(r)}{f(r)}=K tag{1} $$
                and
                $$-frac{g''(theta)}{g(theta)}=K. tag{2} $$
                Now solving (1) and (2) gives
                $$ f(r)=c_1cosh(sqrt Kr)+c_2 isinh(sqrt{K}r), g(theta)=d_1cos(sqrt Ktheta)+d_2sin(sqrt Ktheta). $$
                So
                $$ u(r,theta)=bigg[c_1cosh(sqrt Kr)+c_2 isinh(sqrt{K}r)bigg] bigg[d_1cos(sqrt Ktheta)+d_2sin(sqrt Ktheta)bigg]. $$
                Let $u(r,0)=u(r,2pi)=0$ and then one has
                $$ d_1=0, K=frac{n^2}{4},n=1,2,3cdots. $$
                You can choose $K=frac14$ or $K=1$. Let $u(a,theta)=0,u(b,theta)=f(theta)$ and I think you can determine $C_1,C_2$ which is not very hard.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 30 '18 at 20:11









                xpaulxpaul

                22.6k24455




                22.6k24455






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020452%2fpolar-laplace-equation%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Plaza Victoria

                    Puebla de Zaragoza

                    Change location of user folders through cmd or PowerShell?