Polar laplace equation
$begingroup$
I am really struggling to solve this, the initial condition $u(a,theta)=0$ keeps throwing me off.
ordinary-differential-equations pde
$endgroup$
add a comment |
$begingroup$
I am really struggling to solve this, the initial condition $u(a,theta)=0$ keeps throwing me off.
ordinary-differential-equations pde
$endgroup$
add a comment |
$begingroup$
I am really struggling to solve this, the initial condition $u(a,theta)=0$ keeps throwing me off.
ordinary-differential-equations pde
$endgroup$
I am really struggling to solve this, the initial condition $u(a,theta)=0$ keeps throwing me off.
ordinary-differential-equations pde
ordinary-differential-equations pde
edited Nov 30 '18 at 18:29
caverac
14.4k31130
14.4k31130
asked Nov 30 '18 at 18:27
Jack LeitchJack Leitch
1
1
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $u(r,theta)=f(r)g(theta)$. Then the Laplace equation becomes
$$ f''(r)g(theta)+frac1r f'(r)g(theta)+frac1{r^2}f(r)g''(theta)=0$$
from which one has
$$ frac{f''(r)+frac1r f'(r)}{f(r)}=-frac{g''(theta)}{g(theta)}. $$
Let
$$ frac{f''(r)+frac1r f'(r)}{f(r)}=K tag{1} $$
and
$$-frac{g''(theta)}{g(theta)}=K. tag{2} $$
Now solving (1) and (2) gives
$$ f(r)=c_1cosh(sqrt Kr)+c_2 isinh(sqrt{K}r), g(theta)=d_1cos(sqrt Ktheta)+d_2sin(sqrt Ktheta). $$
So
$$ u(r,theta)=bigg[c_1cosh(sqrt Kr)+c_2 isinh(sqrt{K}r)bigg] bigg[d_1cos(sqrt Ktheta)+d_2sin(sqrt Ktheta)bigg]. $$
Let $u(r,0)=u(r,2pi)=0$ and then one has
$$ d_1=0, K=frac{n^2}{4},n=1,2,3cdots. $$
You can choose $K=frac14$ or $K=1$. Let $u(a,theta)=0,u(b,theta)=f(theta)$ and I think you can determine $C_1,C_2$ which is not very hard.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020452%2fpolar-laplace-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $u(r,theta)=f(r)g(theta)$. Then the Laplace equation becomes
$$ f''(r)g(theta)+frac1r f'(r)g(theta)+frac1{r^2}f(r)g''(theta)=0$$
from which one has
$$ frac{f''(r)+frac1r f'(r)}{f(r)}=-frac{g''(theta)}{g(theta)}. $$
Let
$$ frac{f''(r)+frac1r f'(r)}{f(r)}=K tag{1} $$
and
$$-frac{g''(theta)}{g(theta)}=K. tag{2} $$
Now solving (1) and (2) gives
$$ f(r)=c_1cosh(sqrt Kr)+c_2 isinh(sqrt{K}r), g(theta)=d_1cos(sqrt Ktheta)+d_2sin(sqrt Ktheta). $$
So
$$ u(r,theta)=bigg[c_1cosh(sqrt Kr)+c_2 isinh(sqrt{K}r)bigg] bigg[d_1cos(sqrt Ktheta)+d_2sin(sqrt Ktheta)bigg]. $$
Let $u(r,0)=u(r,2pi)=0$ and then one has
$$ d_1=0, K=frac{n^2}{4},n=1,2,3cdots. $$
You can choose $K=frac14$ or $K=1$. Let $u(a,theta)=0,u(b,theta)=f(theta)$ and I think you can determine $C_1,C_2$ which is not very hard.
$endgroup$
add a comment |
$begingroup$
Let $u(r,theta)=f(r)g(theta)$. Then the Laplace equation becomes
$$ f''(r)g(theta)+frac1r f'(r)g(theta)+frac1{r^2}f(r)g''(theta)=0$$
from which one has
$$ frac{f''(r)+frac1r f'(r)}{f(r)}=-frac{g''(theta)}{g(theta)}. $$
Let
$$ frac{f''(r)+frac1r f'(r)}{f(r)}=K tag{1} $$
and
$$-frac{g''(theta)}{g(theta)}=K. tag{2} $$
Now solving (1) and (2) gives
$$ f(r)=c_1cosh(sqrt Kr)+c_2 isinh(sqrt{K}r), g(theta)=d_1cos(sqrt Ktheta)+d_2sin(sqrt Ktheta). $$
So
$$ u(r,theta)=bigg[c_1cosh(sqrt Kr)+c_2 isinh(sqrt{K}r)bigg] bigg[d_1cos(sqrt Ktheta)+d_2sin(sqrt Ktheta)bigg]. $$
Let $u(r,0)=u(r,2pi)=0$ and then one has
$$ d_1=0, K=frac{n^2}{4},n=1,2,3cdots. $$
You can choose $K=frac14$ or $K=1$. Let $u(a,theta)=0,u(b,theta)=f(theta)$ and I think you can determine $C_1,C_2$ which is not very hard.
$endgroup$
add a comment |
$begingroup$
Let $u(r,theta)=f(r)g(theta)$. Then the Laplace equation becomes
$$ f''(r)g(theta)+frac1r f'(r)g(theta)+frac1{r^2}f(r)g''(theta)=0$$
from which one has
$$ frac{f''(r)+frac1r f'(r)}{f(r)}=-frac{g''(theta)}{g(theta)}. $$
Let
$$ frac{f''(r)+frac1r f'(r)}{f(r)}=K tag{1} $$
and
$$-frac{g''(theta)}{g(theta)}=K. tag{2} $$
Now solving (1) and (2) gives
$$ f(r)=c_1cosh(sqrt Kr)+c_2 isinh(sqrt{K}r), g(theta)=d_1cos(sqrt Ktheta)+d_2sin(sqrt Ktheta). $$
So
$$ u(r,theta)=bigg[c_1cosh(sqrt Kr)+c_2 isinh(sqrt{K}r)bigg] bigg[d_1cos(sqrt Ktheta)+d_2sin(sqrt Ktheta)bigg]. $$
Let $u(r,0)=u(r,2pi)=0$ and then one has
$$ d_1=0, K=frac{n^2}{4},n=1,2,3cdots. $$
You can choose $K=frac14$ or $K=1$. Let $u(a,theta)=0,u(b,theta)=f(theta)$ and I think you can determine $C_1,C_2$ which is not very hard.
$endgroup$
Let $u(r,theta)=f(r)g(theta)$. Then the Laplace equation becomes
$$ f''(r)g(theta)+frac1r f'(r)g(theta)+frac1{r^2}f(r)g''(theta)=0$$
from which one has
$$ frac{f''(r)+frac1r f'(r)}{f(r)}=-frac{g''(theta)}{g(theta)}. $$
Let
$$ frac{f''(r)+frac1r f'(r)}{f(r)}=K tag{1} $$
and
$$-frac{g''(theta)}{g(theta)}=K. tag{2} $$
Now solving (1) and (2) gives
$$ f(r)=c_1cosh(sqrt Kr)+c_2 isinh(sqrt{K}r), g(theta)=d_1cos(sqrt Ktheta)+d_2sin(sqrt Ktheta). $$
So
$$ u(r,theta)=bigg[c_1cosh(sqrt Kr)+c_2 isinh(sqrt{K}r)bigg] bigg[d_1cos(sqrt Ktheta)+d_2sin(sqrt Ktheta)bigg]. $$
Let $u(r,0)=u(r,2pi)=0$ and then one has
$$ d_1=0, K=frac{n^2}{4},n=1,2,3cdots. $$
You can choose $K=frac14$ or $K=1$. Let $u(a,theta)=0,u(b,theta)=f(theta)$ and I think you can determine $C_1,C_2$ which is not very hard.
answered Nov 30 '18 at 20:11
xpaulxpaul
22.6k24455
22.6k24455
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020452%2fpolar-laplace-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown