How can I show this property about the quantile function?












0












$begingroup$


Let $F:mathbb{R}rightarrow [0,1]$ be a non-decreasing right continuous function, and it's generalized inverse function $F^{-1}:[0,1]rightarrow mathbb{R}$ defined as $F^{-1}(y)=inf {xin mathbb{R}:F(x)geq y}$.



How can I show that if
$F^{-1}$ is continuous at $y$ and if $F(x-)leq yleq F(x)$ then $F^{-1}(y)=x$?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    If you take $F$ left continuous, why $F(x-)$ and $F(x)$ differ?
    $endgroup$
    – NCh
    Dec 6 '18 at 1:19










  • $begingroup$
    I edited the post, I meant right continuous, my bad, thank you.
    $endgroup$
    – Enzo Giannotta
    Dec 6 '18 at 16:22
















0












$begingroup$


Let $F:mathbb{R}rightarrow [0,1]$ be a non-decreasing right continuous function, and it's generalized inverse function $F^{-1}:[0,1]rightarrow mathbb{R}$ defined as $F^{-1}(y)=inf {xin mathbb{R}:F(x)geq y}$.



How can I show that if
$F^{-1}$ is continuous at $y$ and if $F(x-)leq yleq F(x)$ then $F^{-1}(y)=x$?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    If you take $F$ left continuous, why $F(x-)$ and $F(x)$ differ?
    $endgroup$
    – NCh
    Dec 6 '18 at 1:19










  • $begingroup$
    I edited the post, I meant right continuous, my bad, thank you.
    $endgroup$
    – Enzo Giannotta
    Dec 6 '18 at 16:22














0












0








0





$begingroup$


Let $F:mathbb{R}rightarrow [0,1]$ be a non-decreasing right continuous function, and it's generalized inverse function $F^{-1}:[0,1]rightarrow mathbb{R}$ defined as $F^{-1}(y)=inf {xin mathbb{R}:F(x)geq y}$.



How can I show that if
$F^{-1}$ is continuous at $y$ and if $F(x-)leq yleq F(x)$ then $F^{-1}(y)=x$?










share|cite|improve this question











$endgroup$




Let $F:mathbb{R}rightarrow [0,1]$ be a non-decreasing right continuous function, and it's generalized inverse function $F^{-1}:[0,1]rightarrow mathbb{R}$ defined as $F^{-1}(y)=inf {xin mathbb{R}:F(x)geq y}$.



How can I show that if
$F^{-1}$ is continuous at $y$ and if $F(x-)leq yleq F(x)$ then $F^{-1}(y)=x$?







probability probability-theory probability-distributions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 6 '18 at 16:21







Enzo Giannotta

















asked Dec 6 '18 at 0:56









Enzo GiannottaEnzo Giannotta

13011




13011








  • 1




    $begingroup$
    If you take $F$ left continuous, why $F(x-)$ and $F(x)$ differ?
    $endgroup$
    – NCh
    Dec 6 '18 at 1:19










  • $begingroup$
    I edited the post, I meant right continuous, my bad, thank you.
    $endgroup$
    – Enzo Giannotta
    Dec 6 '18 at 16:22














  • 1




    $begingroup$
    If you take $F$ left continuous, why $F(x-)$ and $F(x)$ differ?
    $endgroup$
    – NCh
    Dec 6 '18 at 1:19










  • $begingroup$
    I edited the post, I meant right continuous, my bad, thank you.
    $endgroup$
    – Enzo Giannotta
    Dec 6 '18 at 16:22








1




1




$begingroup$
If you take $F$ left continuous, why $F(x-)$ and $F(x)$ differ?
$endgroup$
– NCh
Dec 6 '18 at 1:19




$begingroup$
If you take $F$ left continuous, why $F(x-)$ and $F(x)$ differ?
$endgroup$
– NCh
Dec 6 '18 at 1:19












$begingroup$
I edited the post, I meant right continuous, my bad, thank you.
$endgroup$
– Enzo Giannotta
Dec 6 '18 at 16:22




$begingroup$
I edited the post, I meant right continuous, my bad, thank you.
$endgroup$
– Enzo Giannotta
Dec 6 '18 at 16:22










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027889%2fhow-can-i-show-this-property-about-the-quantile-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027889%2fhow-can-i-show-this-property-about-the-quantile-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Musa