Anexo:Integrales de funciones trigonométricas
La siguiente es una lista de integrales de funciones trigonométricas y su correspondiente simplificación. La letra c representa una constante numérica.
Índice
1 Integrales que contienen solamente sin
2 Integrales que contienen solamente cos
3 Integrales que contienen solamente tan
4 Integrales que contienen solamente cot
5 Integrales que contienen sen y cos
6 Integrales que contienen sen y tan
7 Integrales que contienen cos y tan
8 Integrales que contienen sen y cot
9 Integrales que contienen cos y cot
10 Integrales que contienen tan y cot
11 Integrales que contienen sec
Integrales que contienen solamente sin
- ∫sincxdx=−1ccoscx{displaystyle int sin cx;dx=-{frac {1}{c}}cos cx}
- ∫sinncxdx=−sinn−1cxcoscxnc+n−1n∫sinn−2cxdx(para n>0){displaystyle int sin ^{n}cx;dx=-{frac {sin ^{n-1}cxcos cx}{nc}}+{frac {n-1}{n}}int sin ^{n-2}cx;dxqquad {mbox{(para }}n>0{mbox{)}}}
- ∫xsincxdx=sincxc2−xcoscxc{displaystyle int xsin cx;dx={frac {sin cx}{c^{2}}}-{frac {xcos cx}{c}}}
- ∫xnsincxdx=−xnccoscx+nc∫xn−1coscxdx(para n>0){displaystyle int x^{n}sin cx;dx=-{frac {x^{n}}{c}}cos cx+{frac {n}{c}}int x^{n-1}cos cx;dxqquad {mbox{(para }}n>0{mbox{)}}}
- ∫sincxxdx=∑i=0∞(−1)i(cx)2i+1(2i+1)⋅(2i+1)!{displaystyle int {frac {sin cx}{x}}dx=sum _{i=0}^{infty }(-1)^{i}{frac {(cx)^{2i+1}}{(2i+1)cdot (2i+1)!}}}
- ∫sincxxndx=−sincx(n−1)xn−1+cn−1∫coscxxn−1dx{displaystyle int {frac {sin cx}{x^{n}}}dx=-{frac {sin cx}{(n-1)x^{n-1}}}+{frac {c}{n-1}}int {frac {cos cx}{x^{n-1}}}dx}
- ∫dxsincx=1cln|tancx2|{displaystyle int {frac {dx}{sin cx}}={frac {1}{c}}ln left|tan {frac {cx}{2}}right|}
- ∫dxsinncx=coscxc(1−n)sinn−1cx+n−2n−1∫dxsinn−2cx(para n>1){displaystyle int {frac {dx}{sin ^{n}cx}}={frac {cos cx}{c(1-n)sin ^{n-1}cx}}+{frac {n-2}{n-1}}int {frac {dx}{sin ^{n-2}cx}}qquad {mbox{(para }}n>1{mbox{)}}}
- ∫dx1±sincx=1ctan(cx2∓π4){displaystyle int {frac {dx}{1pm sin cx}}={frac {1}{c}}tan left({frac {cx}{2}}mp {frac {pi }{4}}right)}
- ∫xdx1−sincx=xccot(π4−cx2)+2c2ln|sin(π4−cx2)|{displaystyle int {frac {x;dx}{1-sin cx}}={frac {x}{c}}cot left({frac {pi }{4}}-{frac {cx}{2}}right)+{frac {2}{c^{2}}}ln left|sin left({frac {pi }{4}}-{frac {cx}{2}}right)right|}
- ∫sincxdx1±sincx=±x+1ctan(π4∓cx2){displaystyle int {frac {sin cx;dx}{1pm sin cx}}=pm x+{frac {1}{c}}tan left({frac {pi }{4}}mp {frac {cx}{2}}right)}
- ∫sinc1xsinc2xdx=sin(c1−c2)x2(c1−c2)−sin(c1+c2)x2(c1+c2)(para |c1|≠|c2|){displaystyle int sin c_{1}xsin c_{2}x;dx={frac {sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}-{frac {sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}qquad {mbox{(para }}|c_{1}|neq |c_{2}|{mbox{)}}}
Integrales que contienen solamente cos
- ∫coscxdx=1csincx{displaystyle int cos cx;dx={frac {1}{c}}sin cx}
- ∫cosncxdx=cosn−1cxsincxnc+n−1n∫cosn−2cxdx(para n>0){displaystyle int cos ^{n}cx;dx={frac {cos ^{n-1}cxsin cx}{nc}}+{frac {n-1}{n}}int cos ^{n-2}cx;dxqquad {mbox{(para }}n>0{mbox{)}}}
- ∫xcoscxdx=coscxc2+xsincxc{displaystyle int xcos cx;dx={frac {cos cx}{c^{2}}}+{frac {xsin cx}{c}}}
- ∫xncoscxdx=xnsincxc−nc∫xn−1sincxdx{displaystyle int x^{n}cos cx;dx={frac {x^{n}sin cx}{c}}-{frac {n}{c}}int x^{n-1}sin cx;dx}
- ∫coscxxdx=ln|cx|+∑i=1∞(−1)i(cx)2i2i⋅(2i)!{displaystyle int {frac {cos cx}{x}}dx=ln |cx|+sum _{i=1}^{infty }(-1)^{i}{frac {(cx)^{2i}}{2icdot (2i)!}}}
- ∫coscxxndx=−coscx(n−1)xn−1−cn−1∫sincxxn−1dx(para n≠1){displaystyle int {frac {cos cx}{x^{n}}}dx=-{frac {cos cx}{(n-1)x^{n-1}}}-{frac {c}{n-1}}int {frac {sin cx}{x^{n-1}}}dxqquad {mbox{(para }}nneq 1{mbox{)}}}
- ∫dxcoscx=1cln|tan(cx2+π4)|{displaystyle int {frac {dx}{cos cx}}={frac {1}{c}}ln left|tan left({frac {cx}{2}}+{frac {pi }{4}}right)right|}
- ∫dxcosncx=sincxc(n−1)cosn−1cx+n−2n−1∫dxcosn−2cx(para n>1){displaystyle int {frac {dx}{cos ^{n}cx}}={frac {sin cx}{c(n-1)cos^{n-1}cx}}+{frac {n-2}{n-1}}int {frac {dx}{cos ^{n-2}cx}}qquad {mbox{(para }}n>1{mbox{)}}}
- ∫dx1+coscx=1ctancx2{displaystyle int {frac {dx}{1+cos cx}}={frac {1}{c}}tan {frac {cx}{2}}}
- ∫dx1−coscx=−1ccotcx2{displaystyle int {frac {dx}{1-cos cx}}=-{frac {1}{c}}cot {frac {cx}{2}}}
- ∫xdx1+coscx=xctancx2+2c2ln|coscx2|{displaystyle int {frac {x;dx}{1+cos cx}}={frac {x}{c}}tan {cx}{2}+{frac {2}{c^{2}}}ln left|cos {frac {cx}{2}}right|}
- ∫xdx1−coscx=−xxcotcx2+2c2ln|sincx2|{displaystyle int {frac {x;dx}{1-cos cx}}=-{frac {x}{x}}cot {cx}{2}+{frac {2}{c^{2}}}ln left|sin {frac {cx}{2}}right|}
- ∫coscxdx1+coscx=x−1ctancx2{displaystyle int {frac {cos cx;dx}{1+cos cx}}=x-{frac {1}{c}}tan {frac {cx}{2}}}
- ∫coscxdx1−coscx=−x−1ccotcx2{displaystyle int {frac {cos cx;dx}{1-cos cx}}=-x-{frac {1}{c}}cot {frac {cx}{2}}}
- ∫cosc1xcosc2xdx=sin(c1−c2)x2(c1−c2)+sin(c1+c2)x2(c1+c2)(para |c1|≠|c2|){displaystyle int cos c_{1}xcos c_{2}x;dx={frac {sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}+{frac {sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}qquad {mbox{(para }}|c_{1}|neq |c_{2}|{mbox{)}}}
Integrales que contienen solamente tan
- ∫tancxdx=−1cln|coscx|{displaystyle int tan cx;dx=-{frac {1}{c}}ln |cos cx|}
- ∫tanncxdx=1c(n−1)tann−1cx−∫tann−2cxdx(para n≠1){displaystyle int tan ^{n}cx;dx={frac {1}{c(n-1)}}tan ^{n-1}cx-int tan ^{n-2}cx;dxqquad {mbox{(para }}nneq 1{mbox{)}}}
- ∫dxtancx+1=x2+12cln|sincx+coscx|{displaystyle int {frac {dx}{tan cx+1}}={frac {x}{2}}+{frac {1}{2c}}ln |sin cx+cos cx|}
- ∫dxtancx−1=−x2+12cln|sincx−coscx|{displaystyle int {frac {dx}{tan cx-1}}=-{frac {x}{2}}+{frac {1}{2c}}ln |sin cx-cos cx|}
- ∫tancxdxtancx+1=x2−12cln|sincx+coscx|{displaystyle int {frac {tan cx;dx}{tan cx+1}}={frac {x}{2}}-{frac {1}{2c}}ln |sin cx+cos cx|}
- ∫tancxdxtancx−1=x2+12cln|sincx−coscx|{displaystyle int {frac {tan cx;dx}{tan cx-1}}={frac {x}{2}}+{frac {1}{2c}}ln |sin cx-cos cx|}
Integrales que contienen solamente cot
- ∫cotcxdx=1cln|sincx|{displaystyle int cot cx;dx={frac {1}{c}}ln |sin cx|}
- ∫cotncxdx=−1c(n−1)cotn−1cx−∫cotn−2cxdx(para )n≠1){displaystyle int cot ^{n}cx;dx=-{frac {1}{c(n-1)}}cot ^{n-1}cx-int cot ^{n-2}cx;dxqquad {mbox{(para )}}nneq 1{mbox{)}}}
- ∫dx1+cotcx=∫tancxdxtancx+1{displaystyle int {frac {dx}{1+cot cx}}=int {frac {tan cx;dx}{tan cx+1}}}
- ∫dx1−cotcx=∫tancxdxtancx−1{displaystyle int {frac {dx}{1-cot cx}}=int {frac {tan cx;dx}{tan cx-1}}}
Integrales que contienen sen y cos
- ∫dxcoscx±sincx=1c2ln|tan(cx2±π8)|{displaystyle int {frac {dx}{cos cxpm sin cx}}={frac {1}{c{sqrt {2}}}}ln left|tan left({frac {cx}{2}}pm {frac {pi }{8}}right)right|}
- ∫dx(coscx±sincx)2=12ctan(cx∓π4){displaystyle int {frac {dx}{(cos cxpm sin cx)^{2}}}={frac {1}{2c}}tan left(cxmp {frac {pi }{4}}right)}
- ∫coscxdxcoscx+sincx=x2+12cln|sincx+coscx|{displaystyle int {frac {cos cx;dx}{cos cx+sin cx}}={frac {x}{2}}+{frac {1}{2c}}ln left|sin cx+cos cxright|}
- ∫coscxdxcoscx−sincx=x2−12cln|sincx−coscx|{displaystyle int {frac {cos cx;dx}{cos cx-sin cx}}={frac {x}{2}}-{frac {1}{2c}}ln left|sin cx-cos cxright|}
- ∫sincxdxcoscx+sincx=x2−12cln|sincx+coscx|{displaystyle int {frac {sin cx;dx}{cos cx+sin cx}}={frac {x}{2}}-{frac {1}{2c}}ln left|sin cx+cos cxright|}
- ∫sincxdxcoscx−sincx=−x2−12cln|sincx−coscx|{displaystyle int {frac {sin cx;dx}{cos cx-sin cx}}=-{frac {x}{2}}-{frac {1}{2c}}ln left|sin cx-cos cxright|}
- ∫coscxdxsincx(1+coscx)=−14ctan2cx2+12cln|tancx2|{displaystyle int {frac {cos cx;dx}{sin cx(1+cos cx)}}=-{frac {1}{4c}}tan ^{2}{frac {cx}{2}}+{frac {1}{2c}}ln left|tan {frac {cx}{2}}right|}
- ∫coscxdxsincx(1+−coscx)=−14ccot2cx2−12cln|tancx2|{displaystyle int {frac {cos cx;dx}{sin cx(1+-cos cx)}}=-{frac {1}{4c}}cot ^{2}{frac {cx}{2}}-{frac {1}{2c}}ln left|tan {frac {cx}{2}}right|}
- ∫sincxdxcoscx(1+sincx)=14ccot2(cx2+π4)+12cln|tan(cx2+π4)|{displaystyle int {frac {sin cx;dx}{cos cx(1+sin cx)}}={frac {1}{4c}}cot ^{2}left({frac {cx}{2}}+{frac {pi }{4}}right)+{frac {1}{2c}}ln left|tan left({frac {cx}{2}}+{frac {pi }{4}}right)right|}
- ∫sincxdxcoscx(1−sincx)=14ctan2(cx2+π4)−12cln|tan(cx2+π4)|{displaystyle int {frac {sin cx;dx}{cos cx(1-sin cx)}}={frac {1}{4c}}tan ^{2}left({frac {cx}{2}}+{frac {pi }{4}}right)-{frac {1}{2c}}ln left|tan left({frac {cx}{2}}+{frac {pi }{4}}right)right|}
- ∫sincxcoscxdx=12csin2cx{displaystyle int sin cxcos cx;dx={frac {1}{2c}}sin ^{2}cx}
- ∫sinc1xcosc2xdx=−cos(c1+c2)x2(c1+c2)−cos(c1−c2)x2(c1−c2)(para |c1|≠|c2|){displaystyle int sin c_{1}xcos c_{2}x;dx=-{frac {cos(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}-{frac {cos(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}qquad {mbox{(para }}|c_{1}|neq |c_{2}|{mbox{)}}}
- ∫sinncxcoscxdx=1c(n+1)sinn+1cx(para n≠1){displaystyle int sin ^{n}cxcos cx;dx={frac {1}{c(n+1)}}sin ^{n+1}cxqquad {mbox{(para }}nneq 1{mbox{)}}}
- ∫sincxcosncxdx=−1c(n+1)cosn+1cx(para n≠1){displaystyle int sin cxcos ^{n}cx;dx=-{frac {1}{c(n+1)}}cos ^{n+1}cxqquad {mbox{(para }}nneq 1{mbox{)}}}
- ∫sinncxcosmcxdx=−sinn−1cxcosm+1cxc(n+m)+n−1n+m∫sinn−2cxcosmcxdx(para m,n>0){displaystyle int sin ^{n}cxcos ^{m}cx;dx=-{frac {sin ^{n-1}cxcos ^{m+1}cx}{c(n+m)}}+{frac {n-1}{n+m}}int sin ^{n-2}cxcos ^{m}cx;dxqquad {mbox{(para }}m,n>0{mbox{)}}}
- también: ∫sinncxcosmcxdx=sinn+1cxcosm−1cxc(n+m)+m−1n+m∫sinncxcosm−2cxdx(para m,n>0){displaystyle int sin ^{n}cxcos ^{m}cx;dx={frac {sin ^{n+1}cxcos ^{m-1}cx}{c(n+m)}}+{frac {m-1}{n+m}}int sin ^{n}cxcos ^{m-2}cx;dxqquad {mbox{(para }}m,n>0{mbox{)}}}
- ∫dxsincxcoscx=1cln|tancx|{displaystyle int {frac {dx}{sin cxcos cx}}={frac {1}{c}}ln left|tan cxright|}
- ∫dxsincxcosncx=1c(n−1)cosn−1cx+∫dxsincxcosn−2cx(para n≠1){displaystyle int {frac {dx}{sin cxcos ^{n}cx}}={frac {1}{c(n-1)cos ^{n-1}cx}}+int {frac {dx}{sin cxcos ^{n-2}cx}}qquad {mbox{(para }}nneq 1{mbox{)}}}
- ∫dxsinncxcoscx=−1c(n−1)sinn−1cx+∫dxsinn−2cxcoscx(para n≠1){displaystyle int {frac {dx}{sin ^{n}cxcos cx}}=-{frac {1}{c(n-1)sin ^{n-1}cx}}+int {frac {dx}{sin ^{n-2}cxcos cx}}qquad {mbox{(para }}nneq 1{mbox{)}}}
- ∫sincxdxcosncx=1c(n−1)cosn−1cx(para n≠1){displaystyle int {frac {sin cx;dx}{cos ^{n}cx}}={frac {1}{c(n-1)cos ^{n-1}cx}}qquad {mbox{(para }}nneq 1{mbox{)}}}
- ∫sin2cxdxcoscx=−1csincx+1cln|tan(π4+cx2)|{displaystyle int {frac {sin ^{2}cx;dx}{cos cx}}=-{frac {1}{c}}sin cx+{frac {1}{c}}ln left|tan left({frac {pi }{4}}+{frac {cx}{2}}right)right|}
- ∫sin2cxdxcosncx=sincxc(n−1)cosn−1cx−1n−1∫dxcosn−2cx(para n≠1){displaystyle int {frac {sin ^{2}cx;dx}{cos ^{n}cx}}={frac {sin cx}{c(n-1)cos ^{n-1}cx}}-{frac {1}{n-1}}int {frac {dx}{cos ^{n-2}cx}}qquad {mbox{(para }}nneq 1{mbox{)}}}
- ∫sinncxdxcoscx=−sinn−1cxc(n−1)+∫sinn−2cxdxcoscx(for n≠1){displaystyle int {frac {sin ^{n}cx;dx}{cos cx}}=-{frac {sin ^{n-1}cx}{c(n-1)}}+int {frac {sin ^{n-2}cx;dx}{cos cx}}qquad {mbox{(for }}nneq 1{mbox{)}}}
- ∫sinncxdxcosmcx=sinn+1cxc(m−1)cosm−1cx−n−m+2m−1∫sinncxdxcosm−2cx(para m≠1){displaystyle int {frac {sin^{n}cx;dx}{cos ^{m}cx}}={frac {sin ^{n+1}cx}{c(m-1)cos ^{m-1}cx}}-{frac {n-m+2}{m-1}}int {frac {sin ^{n}cx;dx}{cos ^{m-2}cx}}qquad {mbox{(para }}mneq 1{mbox{)}}}
- también: ∫sinncxdxcosmcx=−sinn−1cxc(n−m)cosm−1cx+n−1n−m∫sinn−2cxdxcosmcx(para m≠n){displaystyle int {frac {sin^{n}cx;dx}{cos ^{m}cx}}=-{frac {sin ^{n-1}cx}{c(n-m)cos ^{m-1}cx}}+{frac {n-1}{n-m}}int {frac {sin ^{n-2}cx;dx}{cos ^{m}cx}}qquad {mbox{(para }}mneq n{mbox{)}}}
- también: ∫sinncxdxcosmcx=sinn−1cxc(m−1)cosm−1cx−n−1n−1∫sinn−1cxdxcosm−2cx(para m≠1){displaystyle int {frac {sin^{n}cx;dx}{cos ^{m}cx}}={frac {sin ^{n-1}cx}{c(m-1)cos ^{m-1}cx}}-{frac {n-1}{n-1}}int {frac {sin ^{n-1}cx;dx}{cos ^{m-2}cx}}qquad {mbox{(para }}mneq 1{mbox{)}}}
- ∫coscxdxsinncx=−1c(n−1)sinn−1cx(para n≠1){displaystyle int {frac {cos cx;dx}{sin ^{n}cx}}=-{frac {1}{c(n-1)sin ^{n-1}cx}}qquad {mbox{(para }}nneq 1{mbox{)}}}
- ∫cos2cxdxsincx=1c(coscx+ln|tancx2|){displaystyle int {frac {cos ^{2}cx;dx}{sin cx}}={frac {1}{c}}left(cos cx+ln left|tan {frac {cx}{2}}right|right)}
- ∫cos2cxdxsinncx=−1n−1(coscxcsinn−1cx)+∫dxsinn−2cx)(para n≠1){displaystyle int {frac {cos ^{2}cx;dx}{sin ^{n}cx}}=-{frac {1}{n-1}}left({frac {cos cx}{csin ^{n-1}cx)}}+int {frac {dx}{sin ^{n-2}cx}}right)qquad {mbox{(para }}nneq 1{mbox{)}}}
- ∫cosncxdxsinmcx=−cosn+1cxc(m−1)sinm−1cx−n−m−2m−1∫cosncxdxsinm−2cx(para m≠1){displaystyle int {frac {cos ^{n}cx;dx}{sin ^{m}cx}}=-{frac {cos ^{n+1}cx}{c(m-1)sin ^{m-1}cx}}-{frac {n-m-2}{m-1}}int {frac {cos^{n}cx;dx}{sin ^{m-2}cx}}qquad {mbox{(para }}mneq 1{mbox{)}}}
- también: ∫cosncxdxsinmcx=cosn−1cxc(n−m)sinm−1cx+n−1n−m∫cosn−2cxdxsinmcx(para m≠n){displaystyle int {frac {cos ^{n}cx;dx}{sin ^{m}cx}}={frac {cos ^{n-1}cx}{c(n-m)sin ^{m-1}cx}}+{frac {n-1}{n-m}}int {frac {cos^{n-2}cx;dx}{sin ^{m}cx}}qquad {mbox{(para }}mneq n{mbox{)}}}
- también: ∫cosncxdxsinmcx=−cosn−1cxc(m−1)sinm−1cx−n−1m−1∫cosn−2cxdxsinm−2cx(para m≠1){displaystyle int {frac {cos ^{n}cx;dx}{sin ^{m}cx}}=-{frac {cos ^{n-1}cx}{c(m-1)sin ^{m-1}cx}}-{frac {n-1}{m-1}}int {frac {cos^{n-2}cx;dx}{sin ^{m-2}cx}}qquad {mbox{(para }}mneq 1{mbox{)}}}
Integrales que contienen sen y tan
- ∫sincxtancxdx=1c(ln|seccx+tancx|−sincx){displaystyle int sin cxtan cx;dx={frac {1}{c}}(ln |sec cx+tan cx|-sin cx),!}
- ∫tanncxdxsin2cx=1fffc(n−1)tann−1(cx)(para n≠1){displaystyle int {frac {tan ^{n}cx;dx}{sin ^{2}cx}}={frac {1}{f}}ff{c(n-1)}tan ^{n-1}(cx)qquad {mbox{(para }}nneq 1{mbox{)}},!}
Integrales que contienen cos y tan
- ∫tanncxdxcos2cx=1c(n+1)tann+1cx(para n≠1){displaystyle int {frac {tan ^{n}cx;dx}{cos ^{2}cx}}={frac {1}{c(n+1)}}tan ^{n+1}cxqquad {mbox{(para }}nneq 1{mbox{)}}}
Integrales que contienen sen y cot
- ∫cotncxdxsin2cx=1c(n+1)cotn+1cx(para n≠1){displaystyle int {frac {cot ^{n}cx;dx}{sin^{2}cx}}={frac {1}{c(n+1)}}cot ^{n+1}cxqquad {mbox{(para }}nneq 1{mbox{)}}}
Integrales que contienen cos y cot
- ∫cotncxdxcos2cx=1c(1−n)tan1−ncx(para n≠1){displaystyle int {frac {cot ^{n}cx;dx}{cos ^{2}cx}}={frac {1}{c(1-n)}}tan ^{1-n}cxqquad {mbox{(para }}nneq 1{mbox{)}},!}
Integrales que contienen tan y cot
∫cotcxtancxdx=x {displaystyle int cot cxtan cx;dx=x }
Integrales que contienen sec
- ∫sec2xdx=tanx+c{displaystyle int sec ^{2}x;dx=tan x+c}
- ∫secxdx=ln|secx+tanx|+c{displaystyle int sec x;dx=ln |sec x+tan x|+c}