Anexo:Integrales de funciones trigonométricas




La siguiente es una lista de integrales de funciones trigonométricas y su correspondiente simplificación. La letra c representa una constante numérica.




Índice






  • 1 Integrales que contienen solamente sin


  • 2 Integrales que contienen solamente cos


  • 3 Integrales que contienen solamente tan


  • 4 Integrales que contienen solamente cot


  • 5 Integrales que contienen sen y cos


  • 6 Integrales que contienen sen y tan


  • 7 Integrales que contienen cos y tan


  • 8 Integrales que contienen sen y cot


  • 9 Integrales que contienen cos y cot


  • 10 Integrales que contienen tan y cot


  • 11 Integrales que contienen sec





Integrales que contienen solamente sin


sin⁡cxdx=−1ccos⁡cx{displaystyle int sin cx;dx=-{frac {1}{c}}cos cx}int sin cx;dx=-{frac  {1}{c}}cos cx

sinn⁡cxdx=−sinn−1⁡cxcos⁡cxnc+n−1n∫sinn−2⁡cxdx(para n>0){displaystyle int sin ^{n}cx;dx=-{frac {sin ^{n-1}cxcos cx}{nc}}+{frac {n-1}{n}}int sin ^{n-2}cx;dxqquad {mbox{(para }}n>0{mbox{)}}}int sin ^{n}cx;dx=-{frac  {sin ^{{n-1}}cxcos cx}{nc}}+{frac  {n-1}{n}}int sin ^{{n-2}}cx;dxqquad {mbox{(para }}n>0{mbox{)}}

xsin⁡cxdx=sin⁡cxc2−xcos⁡cxc{displaystyle int xsin cx;dx={frac {sin cx}{c^{2}}}-{frac {xcos cx}{c}}}int xsin cx;dx={frac  {sin cx}{c^{2}}}-{frac  {xcos cx}{c}}

xnsin⁡cxdx=−xnccos⁡cx+nc∫xn−1cos⁡cxdx(para n>0){displaystyle int x^{n}sin cx;dx=-{frac {x^{n}}{c}}cos cx+{frac {n}{c}}int x^{n-1}cos cx;dxqquad {mbox{(para }}n>0{mbox{)}}}int x^{n}sin cx;dx=-{frac  {x^{n}}{c}}cos cx+{frac  {n}{c}}int x^{{n-1}}cos cx;dxqquad {mbox{(para }}n>0{mbox{)}}

sin⁡cxxdx=∑i=0∞(−1)i(cx)2i+1(2i+1)⋅(2i+1)!{displaystyle int {frac {sin cx}{x}}dx=sum _{i=0}^{infty }(-1)^{i}{frac {(cx)^{2i+1}}{(2i+1)cdot (2i+1)!}}}int {frac  {sin cx}{x}}dx=sum _{{i=0}}^{infty }(-1)^{i}{frac  {(cx)^{{2i+1}}}{(2i+1)cdot (2i+1)!}}

sin⁡cxxndx=−sin⁡cx(n−1)xn−1+cn−1∫cos⁡cxxn−1dx{displaystyle int {frac {sin cx}{x^{n}}}dx=-{frac {sin cx}{(n-1)x^{n-1}}}+{frac {c}{n-1}}int {frac {cos cx}{x^{n-1}}}dx}int {frac  {sin cx}{x^{n}}}dx=-{frac  {sin cx}{(n-1)x^{{n-1}}}}+{frac  {c}{n-1}}int {frac  {cos cx}{x^{{n-1}}}}dx

dxsin⁡cx=1cln⁡|tan⁡cx2|{displaystyle int {frac {dx}{sin cx}}={frac {1}{c}}ln left|tan {frac {cx}{2}}right|}int {frac  {dx}{sin cx}}={frac  {1}{c}}ln left|tan {frac  {cx}{2}}right|

dxsinn⁡cx=cos⁡cxc(1−n)sinn−1⁡cx+n−2n−1∫dxsinn−2⁡cx(para n>1){displaystyle int {frac {dx}{sin ^{n}cx}}={frac {cos cx}{c(1-n)sin ^{n-1}cx}}+{frac {n-2}{n-1}}int {frac {dx}{sin ^{n-2}cx}}qquad {mbox{(para }}n>1{mbox{)}}}{displaystyle int {frac {dx}{sin ^{n}cx}}={frac {cos cx}{c(1-n)sin ^{n-1}cx}}+{frac {n-2}{n-1}}int {frac {dx}{sin ^{n-2}cx}}qquad {mbox{(para }}n>1{mbox{)}}}

dx1±sin⁡cx=1ctan⁡(cx2∓π4){displaystyle int {frac {dx}{1pm sin cx}}={frac {1}{c}}tan left({frac {cx}{2}}mp {frac {pi }{4}}right)}int {frac  {dx}{1pm sin cx}}={frac  {1}{c}}tan left({frac  {cx}{2}}mp {frac  {pi }{4}}right)



xdx1−sin⁡cx=xccot⁡4−cx2)+2c2ln⁡|sin⁡4−cx2)|{displaystyle int {frac {x;dx}{1-sin cx}}={frac {x}{c}}cot left({frac {pi }{4}}-{frac {cx}{2}}right)+{frac {2}{c^{2}}}ln left|sin left({frac {pi }{4}}-{frac {cx}{2}}right)right|}int {frac  {x;dx}{1-sin cx}}={frac  {x}{c}}cot left({frac  {pi }{4}}-{frac  {cx}{2}}right)+{frac  {2}{c^{2}}}ln left|sin left({frac  {pi }{4}}-{frac  {cx}{2}}right)right|

sin⁡cxdx1±sin⁡cx=±x+1ctan⁡4∓cx2){displaystyle int {frac {sin cx;dx}{1pm sin cx}}=pm x+{frac {1}{c}}tan left({frac {pi }{4}}mp {frac {cx}{2}}right)}int {frac  {sin cx;dx}{1pm sin cx}}=pm x+{frac  {1}{c}}tan left({frac  {pi }{4}}mp {frac  {cx}{2}}right)

sin⁡c1xsin⁡c2xdx=sin⁡(c1−c2)x2(c1−c2)−sin⁡(c1+c2)x2(c1+c2)(para |c1|≠|c2|){displaystyle int sin c_{1}xsin c_{2}x;dx={frac {sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}-{frac {sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}qquad {mbox{(para }}|c_{1}|neq |c_{2}|{mbox{)}}}int sin c_{1}xsin c_{2}x;dx={frac  {sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}-{frac  {sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}qquad {mbox{(para }}|c_{1}|neq |c_{2}|{mbox{)}}


Integrales que contienen solamente cos


cos⁡cxdx=1csin⁡cx{displaystyle int cos cx;dx={frac {1}{c}}sin cx}int cos cx;dx={frac  {1}{c}}sin cx

cosn⁡cxdx=cosn−1⁡cxsin⁡cxnc+n−1n∫cosn−2⁡cxdx(para n>0){displaystyle int cos ^{n}cx;dx={frac {cos ^{n-1}cxsin cx}{nc}}+{frac {n-1}{n}}int cos ^{n-2}cx;dxqquad {mbox{(para }}n>0{mbox{)}}}int cos ^{n}cx;dx={frac  {cos ^{{n-1}}cxsin cx}{nc}}+{frac  {n-1}{n}}int cos ^{{n-2}}cx;dxqquad {mbox{(para }}n>0{mbox{)}}

xcos⁡cxdx=cos⁡cxc2+xsin⁡cxc{displaystyle int xcos cx;dx={frac {cos cx}{c^{2}}}+{frac {xsin cx}{c}}}int xcos cx;dx={frac  {cos cx}{c^{2}}}+{frac  {xsin cx}{c}}

xncos⁡cxdx=xnsin⁡cxc−nc∫xn−1sin⁡cxdx{displaystyle int x^{n}cos cx;dx={frac {x^{n}sin cx}{c}}-{frac {n}{c}}int x^{n-1}sin cx;dx}int x^{n}cos cx;dx={frac  {x^{n}sin cx}{c}}-{frac  {n}{c}}int x^{{n-1}}sin cx;dx

cos⁡cxxdx=ln⁡|cx|+∑i=1∞(−1)i(cx)2i2i⋅(2i)!{displaystyle int {frac {cos cx}{x}}dx=ln |cx|+sum _{i=1}^{infty }(-1)^{i}{frac {(cx)^{2i}}{2icdot (2i)!}}}int {frac  {cos cx}{x}}dx=ln |cx|+sum _{{i=1}}^{infty }(-1)^{i}{frac  {(cx)^{{2i}}}{2icdot (2i)!}}

cos⁡cxxndx=−cos⁡cx(n−1)xn−1−cn−1∫sin⁡cxxn−1dx(para n≠1){displaystyle int {frac {cos cx}{x^{n}}}dx=-{frac {cos cx}{(n-1)x^{n-1}}}-{frac {c}{n-1}}int {frac {sin cx}{x^{n-1}}}dxqquad {mbox{(para }}nneq 1{mbox{)}}}int {frac  {cos cx}{x^{n}}}dx=-{frac  {cos cx}{(n-1)x^{{n-1}}}}-{frac  {c}{n-1}}int {frac  {sin cx}{x^{{n-1}}}}dxqquad {mbox{(para }}nneq 1{mbox{)}}

dxcos⁡cx=1cln⁡|tan⁡(cx2+π4)|{displaystyle int {frac {dx}{cos cx}}={frac {1}{c}}ln left|tan left({frac {cx}{2}}+{frac {pi }{4}}right)right|}int {frac  {dx}{cos cx}}={frac  {1}{c}}ln left|tan left({frac  {cx}{2}}+{frac  {pi }{4}}right)right|

dxcosn⁡cx=sin⁡cxc(n−1)cosn−1cx+n−2n−1∫dxcosn−2⁡cx(para n>1){displaystyle int {frac {dx}{cos ^{n}cx}}={frac {sin cx}{c(n-1)cos^{n-1}cx}}+{frac {n-2}{n-1}}int {frac {dx}{cos ^{n-2}cx}}qquad {mbox{(para }}n>1{mbox{)}}}int {frac  {dx}{cos ^{n}cx}}={frac  {sin cx}{c(n-1)cos^{{n-1}}cx}}+{frac  {n-2}{n-1}}int {frac  {dx}{cos ^{{n-2}}cx}}qquad {mbox{(para }}n>1{mbox{)}}

dx1+cos⁡cx=1ctan⁡cx2{displaystyle int {frac {dx}{1+cos cx}}={frac {1}{c}}tan {frac {cx}{2}}}int {frac  {dx}{1+cos cx}}={frac  {1}{c}}tan {frac  {cx}{2}}

dx1−cos⁡cx=−1ccot⁡cx2{displaystyle int {frac {dx}{1-cos cx}}=-{frac {1}{c}}cot {frac {cx}{2}}}int {frac  {dx}{1-cos cx}}=-{frac  {1}{c}}cot {frac  {cx}{2}}

xdx1+cos⁡cx=xctan⁡cx2+2c2ln⁡|cos⁡cx2|{displaystyle int {frac {x;dx}{1+cos cx}}={frac {x}{c}}tan {cx}{2}+{frac {2}{c^{2}}}ln left|cos {frac {cx}{2}}right|}int {frac  {x;dx}{1+cos cx}}={frac  {x}{c}}tan {cx}{2}+{frac  {2}{c^{2}}}ln left|cos {frac  {cx}{2}}right|

xdx1−cos⁡cx=−xxcot⁡cx2+2c2ln⁡|sin⁡cx2|{displaystyle int {frac {x;dx}{1-cos cx}}=-{frac {x}{x}}cot {cx}{2}+{frac {2}{c^{2}}}ln left|sin {frac {cx}{2}}right|}int {frac  {x;dx}{1-cos cx}}=-{frac  {x}{x}}cot {cx}{2}+{frac  {2}{c^{2}}}ln left|sin {frac  {cx}{2}}right|

cos⁡cxdx1+cos⁡cx=x−1ctan⁡cx2{displaystyle int {frac {cos cx;dx}{1+cos cx}}=x-{frac {1}{c}}tan {frac {cx}{2}}}int {frac  {cos cx;dx}{1+cos cx}}=x-{frac  {1}{c}}tan {frac  {cx}{2}}

cos⁡cxdx1−cos⁡cx=−x−1ccot⁡cx2{displaystyle int {frac {cos cx;dx}{1-cos cx}}=-x-{frac {1}{c}}cot {frac {cx}{2}}}int {frac  {cos cx;dx}{1-cos cx}}=-x-{frac  {1}{c}}cot {frac  {cx}{2}}

cos⁡c1xcos⁡c2xdx=sin⁡(c1−c2)x2(c1−c2)+sin⁡(c1+c2)x2(c1+c2)(para |c1|≠|c2|){displaystyle int cos c_{1}xcos c_{2}x;dx={frac {sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}+{frac {sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}qquad {mbox{(para }}|c_{1}|neq |c_{2}|{mbox{)}}}int cos c_{1}xcos c_{2}x;dx={frac  {sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}+{frac  {sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}qquad {mbox{(para }}|c_{1}|neq |c_{2}|{mbox{)}}


Integrales que contienen solamente tan



tan⁡cxdx=−1cln⁡|cos⁡cx|{displaystyle int tan cx;dx=-{frac {1}{c}}ln |cos cx|}int tan cx;dx=-{frac  {1}{c}}ln |cos cx|


tann⁡cxdx=1c(n−1)tann−1⁡cx−tann−2⁡cxdx(para n≠1){displaystyle int tan ^{n}cx;dx={frac {1}{c(n-1)}}tan ^{n-1}cx-int tan ^{n-2}cx;dxqquad {mbox{(para }}nneq 1{mbox{)}}}int tan ^{n}cx;dx={frac  {1}{c(n-1)}}tan ^{{n-1}}cx-int tan ^{{n-2}}cx;dxqquad {mbox{(para }}nneq 1{mbox{)}}


dxtan⁡cx+1=x2+12cln⁡|sin⁡cx+cos⁡cx|{displaystyle int {frac {dx}{tan cx+1}}={frac {x}{2}}+{frac {1}{2c}}ln |sin cx+cos cx|}int {frac  {dx}{tan cx+1}}={frac  {x}{2}}+{frac  {1}{2c}}ln |sin cx+cos cx|

dxtan⁡cx−1=−x2+12cln⁡|sin⁡cx−cos⁡cx|{displaystyle int {frac {dx}{tan cx-1}}=-{frac {x}{2}}+{frac {1}{2c}}ln |sin cx-cos cx|}int {frac  {dx}{tan cx-1}}=-{frac  {x}{2}}+{frac  {1}{2c}}ln |sin cx-cos cx|

tan⁡cxdxtan⁡cx+1=x2−12cln⁡|sin⁡cx+cos⁡cx|{displaystyle int {frac {tan cx;dx}{tan cx+1}}={frac {x}{2}}-{frac {1}{2c}}ln |sin cx+cos cx|}int {frac  {tan cx;dx}{tan cx+1}}={frac  {x}{2}}-{frac  {1}{2c}}ln |sin cx+cos cx|

tan⁡cxdxtan⁡cx−1=x2+12cln⁡|sin⁡cx−cos⁡cx|{displaystyle int {frac {tan cx;dx}{tan cx-1}}={frac {x}{2}}+{frac {1}{2c}}ln |sin cx-cos cx|}int {frac  {tan cx;dx}{tan cx-1}}={frac  {x}{2}}+{frac  {1}{2c}}ln |sin cx-cos cx|


Integrales que contienen solamente cot


cot⁡cxdx=1cln⁡|sin⁡cx|{displaystyle int cot cx;dx={frac {1}{c}}ln |sin cx|}int cot cx;dx={frac  {1}{c}}ln |sin cx|

cotn⁡cxdx=−1c(n−1)cotn−1⁡cx−cotn−2⁡cxdx(para )n≠1){displaystyle int cot ^{n}cx;dx=-{frac {1}{c(n-1)}}cot ^{n-1}cx-int cot ^{n-2}cx;dxqquad {mbox{(para )}}nneq 1{mbox{)}}}int cot ^{n}cx;dx=-{frac  {1}{c(n-1)}}cot ^{{n-1}}cx-int cot ^{{n-2}}cx;dxqquad {mbox{(para )}}nneq 1{mbox{)}}

dx1+cot⁡cx=∫tan⁡cxdxtan⁡cx+1{displaystyle int {frac {dx}{1+cot cx}}=int {frac {tan cx;dx}{tan cx+1}}}int {frac  {dx}{1+cot cx}}=int {frac  {tan cx;dx}{tan cx+1}}

dx1−cot⁡cx=∫tan⁡cxdxtan⁡cx−1{displaystyle int {frac {dx}{1-cot cx}}=int {frac {tan cx;dx}{tan cx-1}}}int {frac  {dx}{1-cot cx}}=int {frac  {tan cx;dx}{tan cx-1}}


Integrales que contienen sen y cos


dxcos⁡cx±sin⁡cx=1c2ln⁡|tan⁡(cx2±π8)|{displaystyle int {frac {dx}{cos cxpm sin cx}}={frac {1}{c{sqrt {2}}}}ln left|tan left({frac {cx}{2}}pm {frac {pi }{8}}right)right|}int {frac  {dx}{cos cxpm sin cx}}={frac  {1}{c{sqrt  {2}}}}ln left|tan left({frac  {cx}{2}}pm {frac  {pi }{8}}right)right|

dx(cos⁡cx±sin⁡cx)2=12ctan⁡(cx∓π4){displaystyle int {frac {dx}{(cos cxpm sin cx)^{2}}}={frac {1}{2c}}tan left(cxmp {frac {pi }{4}}right)}int {frac  {dx}{(cos cxpm sin cx)^{2}}}={frac  {1}{2c}}tan left(cxmp {frac  {pi }{4}}right)

cos⁡cxdxcos⁡cx+sin⁡cx=x2+12cln⁡|sin⁡cx+cos⁡cx|{displaystyle int {frac {cos cx;dx}{cos cx+sin cx}}={frac {x}{2}}+{frac {1}{2c}}ln left|sin cx+cos cxright|}int {frac  {cos cx;dx}{cos cx+sin cx}}={frac  {x}{2}}+{frac  {1}{2c}}ln left|sin cx+cos cxright|

cos⁡cxdxcos⁡cx−sin⁡cx=x2−12cln⁡|sin⁡cx−cos⁡cx|{displaystyle int {frac {cos cx;dx}{cos cx-sin cx}}={frac {x}{2}}-{frac {1}{2c}}ln left|sin cx-cos cxright|}int {frac  {cos cx;dx}{cos cx-sin cx}}={frac  {x}{2}}-{frac  {1}{2c}}ln left|sin cx-cos cxright|

sin⁡cxdxcos⁡cx+sin⁡cx=x2−12cln⁡|sin⁡cx+cos⁡cx|{displaystyle int {frac {sin cx;dx}{cos cx+sin cx}}={frac {x}{2}}-{frac {1}{2c}}ln left|sin cx+cos cxright|}int {frac  {sin cx;dx}{cos cx+sin cx}}={frac  {x}{2}}-{frac  {1}{2c}}ln left|sin cx+cos cxright|

sin⁡cxdxcos⁡cx−sin⁡cx=−x2−12cln⁡|sin⁡cx−cos⁡cx|{displaystyle int {frac {sin cx;dx}{cos cx-sin cx}}=-{frac {x}{2}}-{frac {1}{2c}}ln left|sin cx-cos cxright|}int {frac  {sin cx;dx}{cos cx-sin cx}}=-{frac  {x}{2}}-{frac  {1}{2c}}ln left|sin cx-cos cxright|

cos⁡cxdxsin⁡cx(1+cos⁡cx)=−14ctan2⁡cx2+12cln⁡|tan⁡cx2|{displaystyle int {frac {cos cx;dx}{sin cx(1+cos cx)}}=-{frac {1}{4c}}tan ^{2}{frac {cx}{2}}+{frac {1}{2c}}ln left|tan {frac {cx}{2}}right|}int {frac  {cos cx;dx}{sin cx(1+cos cx)}}=-{frac  {1}{4c}}tan ^{2}{frac  {cx}{2}}+{frac  {1}{2c}}ln left|tan {frac  {cx}{2}}right|

cos⁡cxdxsin⁡cx(1+−cos⁡cx)=−14ccot2⁡cx2−12cln⁡|tan⁡cx2|{displaystyle int {frac {cos cx;dx}{sin cx(1+-cos cx)}}=-{frac {1}{4c}}cot ^{2}{frac {cx}{2}}-{frac {1}{2c}}ln left|tan {frac {cx}{2}}right|}int {frac  {cos cx;dx}{sin cx(1+-cos cx)}}=-{frac  {1}{4c}}cot ^{2}{frac  {cx}{2}}-{frac  {1}{2c}}ln left|tan {frac  {cx}{2}}right|

sin⁡cxdxcos⁡cx(1+sin⁡cx)=14ccot2⁡(cx2+π4)+12cln⁡|tan⁡(cx2+π4)|{displaystyle int {frac {sin cx;dx}{cos cx(1+sin cx)}}={frac {1}{4c}}cot ^{2}left({frac {cx}{2}}+{frac {pi }{4}}right)+{frac {1}{2c}}ln left|tan left({frac {cx}{2}}+{frac {pi }{4}}right)right|}int {frac  {sin cx;dx}{cos cx(1+sin cx)}}={frac  {1}{4c}}cot ^{2}left({frac  {cx}{2}}+{frac  {pi }{4}}right)+{frac  {1}{2c}}ln left|tan left({frac  {cx}{2}}+{frac  {pi }{4}}right)right|

sin⁡cxdxcos⁡cx(1−sin⁡cx)=14ctan2⁡(cx2+π4)−12cln⁡|tan⁡(cx2+π4)|{displaystyle int {frac {sin cx;dx}{cos cx(1-sin cx)}}={frac {1}{4c}}tan ^{2}left({frac {cx}{2}}+{frac {pi }{4}}right)-{frac {1}{2c}}ln left|tan left({frac {cx}{2}}+{frac {pi }{4}}right)right|}int {frac  {sin cx;dx}{cos cx(1-sin cx)}}={frac  {1}{4c}}tan ^{2}left({frac  {cx}{2}}+{frac  {pi }{4}}right)-{frac  {1}{2c}}ln left|tan left({frac  {cx}{2}}+{frac  {pi }{4}}right)right|

sin⁡cxcos⁡cxdx=12csin2⁡cx{displaystyle int sin cxcos cx;dx={frac {1}{2c}}sin ^{2}cx}int sin cxcos cx;dx={frac  {1}{2c}}sin ^{2}cx

sin⁡c1xcos⁡c2xdx=−cos⁡(c1+c2)x2(c1+c2)−cos⁡(c1−c2)x2(c1−c2)(para |c1|≠|c2|){displaystyle int sin c_{1}xcos c_{2}x;dx=-{frac {cos(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}-{frac {cos(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}qquad {mbox{(para }}|c_{1}|neq |c_{2}|{mbox{)}}}int sin c_{1}xcos c_{2}x;dx=-{frac  {cos(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}-{frac  {cos(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}qquad {mbox{(para }}|c_{1}|neq |c_{2}|{mbox{)}}

sinn⁡cxcos⁡cxdx=1c(n+1)sinn+1⁡cx(para n≠1){displaystyle int sin ^{n}cxcos cx;dx={frac {1}{c(n+1)}}sin ^{n+1}cxqquad {mbox{(para }}nneq 1{mbox{)}}}int sin ^{n}cxcos cx;dx={frac  {1}{c(n+1)}}sin ^{{n+1}}cxqquad {mbox{(para }}nneq 1{mbox{)}}

sin⁡cxcosn⁡cxdx=−1c(n+1)cosn+1⁡cx(para n≠1){displaystyle int sin cxcos ^{n}cx;dx=-{frac {1}{c(n+1)}}cos ^{n+1}cxqquad {mbox{(para }}nneq 1{mbox{)}}}int sin cxcos ^{n}cx;dx=-{frac  {1}{c(n+1)}}cos ^{{n+1}}cxqquad {mbox{(para }}nneq 1{mbox{)}}

sinn⁡cxcosm⁡cxdx=−sinn−1⁡cxcosm+1⁡cxc(n+m)+n−1n+m∫sinn−2⁡cxcosm⁡cxdx(para m,n>0){displaystyle int sin ^{n}cxcos ^{m}cx;dx=-{frac {sin ^{n-1}cxcos ^{m+1}cx}{c(n+m)}}+{frac {n-1}{n+m}}int sin ^{n-2}cxcos ^{m}cx;dxqquad {mbox{(para }}m,n>0{mbox{)}}}int sin ^{n}cxcos ^{m}cx;dx=-{frac  {sin ^{{n-1}}cxcos ^{{m+1}}cx}{c(n+m)}}+{frac  {n-1}{n+m}}int sin ^{{n-2}}cxcos ^{m}cx;dxqquad {mbox{(para }}m,n>0{mbox{)}}

también: sinn⁡cxcosm⁡cxdx=sinn+1⁡cxcosm−1⁡cxc(n+m)+m−1n+m∫sinn⁡cxcosm−2⁡cxdx(para m,n>0){displaystyle int sin ^{n}cxcos ^{m}cx;dx={frac {sin ^{n+1}cxcos ^{m-1}cx}{c(n+m)}}+{frac {m-1}{n+m}}int sin ^{n}cxcos ^{m-2}cx;dxqquad {mbox{(para }}m,n>0{mbox{)}}}int sin ^{n}cxcos ^{m}cx;dx={frac  {sin ^{{n+1}}cxcos ^{{m-1}}cx}{c(n+m)}}+{frac  {m-1}{n+m}}int sin ^{n}cxcos ^{{m-2}}cx;dxqquad {mbox{(para }}m,n>0{mbox{)}}

dxsin⁡cxcos⁡cx=1cln⁡|tan⁡cx|{displaystyle int {frac {dx}{sin cxcos cx}}={frac {1}{c}}ln left|tan cxright|}int {frac  {dx}{sin cxcos cx}}={frac  {1}{c}}ln left|tan cxright|

dxsin⁡cxcosn⁡cx=1c(n−1)cosn−1⁡cx+∫dxsin⁡cxcosn−2⁡cx(para n≠1){displaystyle int {frac {dx}{sin cxcos ^{n}cx}}={frac {1}{c(n-1)cos ^{n-1}cx}}+int {frac {dx}{sin cxcos ^{n-2}cx}}qquad {mbox{(para }}nneq 1{mbox{)}}}int {frac  {dx}{sin cxcos ^{n}cx}}={frac  {1}{c(n-1)cos ^{{n-1}}cx}}+int {frac  {dx}{sin cxcos ^{{n-2}}cx}}qquad {mbox{(para }}nneq 1{mbox{)}}

dxsinn⁡cxcos⁡cx=−1c(n−1)sinn−1⁡cx+∫dxsinn−2⁡cxcos⁡cx(para n≠1){displaystyle int {frac {dx}{sin ^{n}cxcos cx}}=-{frac {1}{c(n-1)sin ^{n-1}cx}}+int {frac {dx}{sin ^{n-2}cxcos cx}}qquad {mbox{(para }}nneq 1{mbox{)}}}int {frac  {dx}{sin ^{n}cxcos cx}}=-{frac  {1}{c(n-1)sin ^{{n-1}}cx}}+int {frac  {dx}{sin ^{{n-2}}cxcos cx}}qquad {mbox{(para }}nneq 1{mbox{)}}

sin⁡cxdxcosn⁡cx=1c(n−1)cosn−1⁡cx(para n≠1){displaystyle int {frac {sin cx;dx}{cos ^{n}cx}}={frac {1}{c(n-1)cos ^{n-1}cx}}qquad {mbox{(para }}nneq 1{mbox{)}}}int {frac  {sin cx;dx}{cos ^{n}cx}}={frac  {1}{c(n-1)cos ^{{n-1}}cx}}qquad {mbox{(para }}nneq 1{mbox{)}}

sin2⁡cxdxcos⁡cx=−1csin⁡cx+1cln⁡|tan⁡4+cx2)|{displaystyle int {frac {sin ^{2}cx;dx}{cos cx}}=-{frac {1}{c}}sin cx+{frac {1}{c}}ln left|tan left({frac {pi }{4}}+{frac {cx}{2}}right)right|}int {frac  {sin ^{2}cx;dx}{cos cx}}=-{frac  {1}{c}}sin cx+{frac  {1}{c}}ln left|tan left({frac  {pi }{4}}+{frac  {cx}{2}}right)right|

sin2⁡cxdxcosn⁡cx=sin⁡cxc(n−1)cosn−1⁡cx−1n−1∫dxcosn−2⁡cx(para n≠1){displaystyle int {frac {sin ^{2}cx;dx}{cos ^{n}cx}}={frac {sin cx}{c(n-1)cos ^{n-1}cx}}-{frac {1}{n-1}}int {frac {dx}{cos ^{n-2}cx}}qquad {mbox{(para }}nneq 1{mbox{)}}}int {frac  {sin ^{2}cx;dx}{cos ^{n}cx}}={frac  {sin cx}{c(n-1)cos ^{{n-1}}cx}}-{frac  {1}{n-1}}int {frac  {dx}{cos ^{{n-2}}cx}}qquad {mbox{(para }}nneq 1{mbox{)}}

sinn⁡cxdxcos⁡cx=−sinn−1⁡cxc(n−1)+∫sinn−2⁡cxdxcos⁡cx(for n≠1){displaystyle int {frac {sin ^{n}cx;dx}{cos cx}}=-{frac {sin ^{n-1}cx}{c(n-1)}}+int {frac {sin ^{n-2}cx;dx}{cos cx}}qquad {mbox{(for }}nneq 1{mbox{)}}}int {frac  {sin ^{n}cx;dx}{cos cx}}=-{frac  {sin ^{{n-1}}cx}{c(n-1)}}+int {frac  {sin ^{{n-2}}cx;dx}{cos cx}}qquad {mbox{(for }}nneq 1{mbox{)}}

sinncxdxcosm⁡cx=sinn+1⁡cxc(m−1)cosm−1⁡cx−n−m+2m−1∫sinn⁡cxdxcosm−2⁡cx(para m≠1){displaystyle int {frac {sin^{n}cx;dx}{cos ^{m}cx}}={frac {sin ^{n+1}cx}{c(m-1)cos ^{m-1}cx}}-{frac {n-m+2}{m-1}}int {frac {sin ^{n}cx;dx}{cos ^{m-2}cx}}qquad {mbox{(para }}mneq 1{mbox{)}}}int {frac  {sin^{n}cx;dx}{cos ^{m}cx}}={frac  {sin ^{{n+1}}cx}{c(m-1)cos ^{{m-1}}cx}}-{frac  {n-m+2}{m-1}}int {frac  {sin ^{n}cx;dx}{cos ^{{m-2}}cx}}qquad {mbox{(para }}mneq 1{mbox{)}}

también: sinncxdxcosm⁡cx=−sinn−1⁡cxc(n−m)cosm−1⁡cx+n−1n−m∫sinn−2⁡cxdxcosm⁡cx(para m≠n){displaystyle int {frac {sin^{n}cx;dx}{cos ^{m}cx}}=-{frac {sin ^{n-1}cx}{c(n-m)cos ^{m-1}cx}}+{frac {n-1}{n-m}}int {frac {sin ^{n-2}cx;dx}{cos ^{m}cx}}qquad {mbox{(para }}mneq n{mbox{)}}}int {frac  {sin^{n}cx;dx}{cos ^{m}cx}}=-{frac  {sin ^{{n-1}}cx}{c(n-m)cos ^{{m-1}}cx}}+{frac  {n-1}{n-m}}int {frac  {sin ^{{n-2}}cx;dx}{cos ^{m}cx}}qquad {mbox{(para }}mneq n{mbox{)}}

también: sinncxdxcosm⁡cx=sinn−1⁡cxc(m−1)cosm−1⁡cx−n−1n−1∫sinn−1⁡cxdxcosm−2⁡cx(para m≠1){displaystyle int {frac {sin^{n}cx;dx}{cos ^{m}cx}}={frac {sin ^{n-1}cx}{c(m-1)cos ^{m-1}cx}}-{frac {n-1}{n-1}}int {frac {sin ^{n-1}cx;dx}{cos ^{m-2}cx}}qquad {mbox{(para }}mneq 1{mbox{)}}}int {frac  {sin^{n}cx;dx}{cos ^{m}cx}}={frac  {sin ^{{n-1}}cx}{c(m-1)cos ^{{m-1}}cx}}-{frac  {n-1}{n-1}}int {frac  {sin ^{{n-1}}cx;dx}{cos ^{{m-2}}cx}}qquad {mbox{(para }}mneq 1{mbox{)}}

cos⁡cxdxsinn⁡cx=−1c(n−1)sinn−1⁡cx(para n≠1){displaystyle int {frac {cos cx;dx}{sin ^{n}cx}}=-{frac {1}{c(n-1)sin ^{n-1}cx}}qquad {mbox{(para }}nneq 1{mbox{)}}}int {frac  {cos cx;dx}{sin ^{n}cx}}=-{frac  {1}{c(n-1)sin ^{{n-1}}cx}}qquad {mbox{(para }}nneq 1{mbox{)}}

cos2⁡cxdxsin⁡cx=1c(cos⁡cx+ln⁡|tan⁡cx2|){displaystyle int {frac {cos ^{2}cx;dx}{sin cx}}={frac {1}{c}}left(cos cx+ln left|tan {frac {cx}{2}}right|right)}int {frac  {cos ^{2}cx;dx}{sin cx}}={frac  {1}{c}}left(cos cx+ln left|tan {frac  {cx}{2}}right|right)

cos2⁡cxdxsinn⁡cx=−1n−1(cos⁡cxcsinn−1⁡cx)+∫dxsinn−2⁡cx)(para n≠1){displaystyle int {frac {cos ^{2}cx;dx}{sin ^{n}cx}}=-{frac {1}{n-1}}left({frac {cos cx}{csin ^{n-1}cx)}}+int {frac {dx}{sin ^{n-2}cx}}right)qquad {mbox{(para }}nneq 1{mbox{)}}}int {frac  {cos ^{2}cx;dx}{sin ^{n}cx}}=-{frac  {1}{n-1}}left({frac  {cos cx}{csin ^{{n-1}}cx)}}+int {frac  {dx}{sin ^{{n-2}}cx}}right)qquad {mbox{(para }}nneq 1{mbox{)}}

cosn⁡cxdxsinm⁡cx=−cosn+1⁡cxc(m−1)sinm−1⁡cx−n−m−2m−1∫cosncxdxsinm−2⁡cx(para m≠1){displaystyle int {frac {cos ^{n}cx;dx}{sin ^{m}cx}}=-{frac {cos ^{n+1}cx}{c(m-1)sin ^{m-1}cx}}-{frac {n-m-2}{m-1}}int {frac {cos^{n}cx;dx}{sin ^{m-2}cx}}qquad {mbox{(para }}mneq 1{mbox{)}}}int {frac  {cos ^{n}cx;dx}{sin ^{m}cx}}=-{frac  {cos ^{{n+1}}cx}{c(m-1)sin ^{{m-1}}cx}}-{frac  {n-m-2}{m-1}}int {frac  {cos^{n}cx;dx}{sin ^{{m-2}}cx}}qquad {mbox{(para }}mneq 1{mbox{)}}

también: cosn⁡cxdxsinm⁡cx=cosn−1⁡cxc(n−m)sinm−1⁡cx+n−1n−m∫cosn−2cxdxsinm⁡cx(para m≠n){displaystyle int {frac {cos ^{n}cx;dx}{sin ^{m}cx}}={frac {cos ^{n-1}cx}{c(n-m)sin ^{m-1}cx}}+{frac {n-1}{n-m}}int {frac {cos^{n-2}cx;dx}{sin ^{m}cx}}qquad {mbox{(para }}mneq n{mbox{)}}}int {frac  {cos ^{n}cx;dx}{sin ^{m}cx}}={frac  {cos ^{{n-1}}cx}{c(n-m)sin ^{{m-1}}cx}}+{frac  {n-1}{n-m}}int {frac  {cos^{{n-2}}cx;dx}{sin ^{m}cx}}qquad {mbox{(para }}mneq n{mbox{)}}

también: cosn⁡cxdxsinm⁡cx=−cosn−1⁡cxc(m−1)sinm−1⁡cx−n−1m−1∫cosn−2cxdxsinm−2⁡cx(para m≠1){displaystyle int {frac {cos ^{n}cx;dx}{sin ^{m}cx}}=-{frac {cos ^{n-1}cx}{c(m-1)sin ^{m-1}cx}}-{frac {n-1}{m-1}}int {frac {cos^{n-2}cx;dx}{sin ^{m-2}cx}}qquad {mbox{(para }}mneq 1{mbox{)}}}int {frac  {cos ^{n}cx;dx}{sin ^{m}cx}}=-{frac  {cos ^{{n-1}}cx}{c(m-1)sin ^{{m-1}}cx}}-{frac  {n-1}{m-1}}int {frac  {cos^{{n-2}}cx;dx}{sin ^{{m-2}}cx}}qquad {mbox{(para }}mneq 1{mbox{)}}


Integrales que contienen sen y tan


sin⁡cxtan⁡cxdx=1c(ln⁡|sec⁡cx+tan⁡cx|−sin⁡cx){displaystyle int sin cxtan cx;dx={frac {1}{c}}(ln |sec cx+tan cx|-sin cx),!}int sin cxtan cx;dx={frac  {1}{c}}(ln |sec cx+tan cx|-sin cx),!

tann⁡cxdxsin2⁡cx=1fffc(n−1)tann−1⁡(cx)(para n≠1){displaystyle int {frac {tan ^{n}cx;dx}{sin ^{2}cx}}={frac {1}{f}}ff{c(n-1)}tan ^{n-1}(cx)qquad {mbox{(para }}nneq 1{mbox{)}},!}int {frac  {tan ^{n}cx;dx}{sin ^{2}cx}}={frac  {1}f}ff{c(n-1)}tan ^{{n-1}}(cx)qquad {mbox{(para }}nneq 1{mbox{)}},!


Integrales que contienen cos y tan


tann⁡cxdxcos2⁡cx=1c(n+1)tann+1⁡cx(para n≠1){displaystyle int {frac {tan ^{n}cx;dx}{cos ^{2}cx}}={frac {1}{c(n+1)}}tan ^{n+1}cxqquad {mbox{(para }}nneq 1{mbox{)}}}int {frac  {tan ^{n}cx;dx}{cos ^{2}cx}}={frac  {1}{c(n+1)}}tan ^{{n+1}}cxqquad {mbox{(para }}nneq 1{mbox{)}}


Integrales que contienen sen y cot


cotn⁡cxdxsin2cx=1c(n+1)cotn+1⁡cx(para n≠1){displaystyle int {frac {cot ^{n}cx;dx}{sin^{2}cx}}={frac {1}{c(n+1)}}cot ^{n+1}cxqquad {mbox{(para }}nneq 1{mbox{)}}}int {frac  {cot ^{n}cx;dx}{sin^{2}cx}}={frac  {1}{c(n+1)}}cot ^{{n+1}}cxqquad {mbox{(para }}nneq 1{mbox{)}}


Integrales que contienen cos y cot


cotn⁡cxdxcos2⁡cx=1c(1−n)tan1−n⁡cx(para n≠1){displaystyle int {frac {cot ^{n}cx;dx}{cos ^{2}cx}}={frac {1}{c(1-n)}}tan ^{1-n}cxqquad {mbox{(para }}nneq 1{mbox{)}},!}int {frac  {cot ^{n}cx;dx}{cos ^{2}cx}}={frac  {1}{c(1-n)}}tan ^{{1-n}}cxqquad {mbox{(para }}nneq 1{mbox{)}},!




Integrales que contienen tan y cot


cot⁡cxtan⁡cxdx=x {displaystyle int cot cxtan cx;dx=x }int cot cxtan cx;dx=x



Integrales que contienen sec


sec2⁡xdx=tan⁡x+c{displaystyle int sec ^{2}x;dx=tan x+c}int sec ^{2}x;dx=tan x+c

sec⁡xdx=ln⁡|sec⁡x+tan⁡x|+c{displaystyle int sec x;dx=ln |sec x+tan x|+c}int sec x;dx=ln |sec x+tan x|+c



Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Musa