Animating wave motion in water
$begingroup$
Further to this question I found on MSE, I tried to replicate
from here
this is as far as I got:
fun[a_, b_, c_, x_, y_] :=
Point[{#[[1]] + x, #[[2]] + y} &[
Part[CirclePoints[360] c,
If[a + b == 360, 360, Mod[a + b, 360]]]]];
tab = With[{a = #},
Flatten[Table[
Table[fun[a, 90 + 15 n, 1 - .15 m, -1 + .5 n, -.35 m], {m, 0,
10}], {n, 0, 24}], 1]] & /@ Range[1, 360, 15];
Module[{t, x, y, fun, xf, yf, a}, x = -.5; y = 1;
fun[a_, b_, c_, x_, y_] :=
Point[{#[[1]] + x, #[[2]] + y} &[
Part[CirclePoints[360] c,
If[a + b == 360, 360, Mod[a + b, 360]]]]];
xf[t_, a_, b_] := a t - b Sin[t]; yf[t_, a_, b_] := a - b Cos[t];
Animate[
Show[
Graphics[
{PointSize[.01], tab[[a]]},
PlotRange -> {{-1 - x, 10 + x}, {-1 - y, 1}}
],
ParametricPlot[
{(Pi/2) xf[t + 2 Pi a/24, 1.25, .6] - 4 Pi a/24 - Pi^2 + .05,
2.05 - 1.65 yf[t + 2 Pi a/24, 1.25, .6]},
{t, -4 Pi, 4 Pi}, Axes -> False
]
],
{a, 1, 24, 1}, ControlPlacement -> Top, AnimationRate -> 5,
AnimationDirection -> Backward
]
]
which is not very efficient (I'm sure Part
could be applied more efficiently), and despite various tweeks, I couldn't quite manage to get the cycloid to line up with the points.
What is a better way to approach this?
performance-tuning animation
$endgroup$
add a comment |
$begingroup$
Further to this question I found on MSE, I tried to replicate
from here
this is as far as I got:
fun[a_, b_, c_, x_, y_] :=
Point[{#[[1]] + x, #[[2]] + y} &[
Part[CirclePoints[360] c,
If[a + b == 360, 360, Mod[a + b, 360]]]]];
tab = With[{a = #},
Flatten[Table[
Table[fun[a, 90 + 15 n, 1 - .15 m, -1 + .5 n, -.35 m], {m, 0,
10}], {n, 0, 24}], 1]] & /@ Range[1, 360, 15];
Module[{t, x, y, fun, xf, yf, a}, x = -.5; y = 1;
fun[a_, b_, c_, x_, y_] :=
Point[{#[[1]] + x, #[[2]] + y} &[
Part[CirclePoints[360] c,
If[a + b == 360, 360, Mod[a + b, 360]]]]];
xf[t_, a_, b_] := a t - b Sin[t]; yf[t_, a_, b_] := a - b Cos[t];
Animate[
Show[
Graphics[
{PointSize[.01], tab[[a]]},
PlotRange -> {{-1 - x, 10 + x}, {-1 - y, 1}}
],
ParametricPlot[
{(Pi/2) xf[t + 2 Pi a/24, 1.25, .6] - 4 Pi a/24 - Pi^2 + .05,
2.05 - 1.65 yf[t + 2 Pi a/24, 1.25, .6]},
{t, -4 Pi, 4 Pi}, Axes -> False
]
],
{a, 1, 24, 1}, ControlPlacement -> Top, AnimationRate -> 5,
AnimationDirection -> Backward
]
]
which is not very efficient (I'm sure Part
could be applied more efficiently), and despite various tweeks, I couldn't quite manage to get the cycloid to line up with the points.
What is a better way to approach this?
performance-tuning animation
$endgroup$
$begingroup$
See this: mathematica.stackexchange.com/questions/123127/…
$endgroup$
– LCarvalho
2 days ago
add a comment |
$begingroup$
Further to this question I found on MSE, I tried to replicate
from here
this is as far as I got:
fun[a_, b_, c_, x_, y_] :=
Point[{#[[1]] + x, #[[2]] + y} &[
Part[CirclePoints[360] c,
If[a + b == 360, 360, Mod[a + b, 360]]]]];
tab = With[{a = #},
Flatten[Table[
Table[fun[a, 90 + 15 n, 1 - .15 m, -1 + .5 n, -.35 m], {m, 0,
10}], {n, 0, 24}], 1]] & /@ Range[1, 360, 15];
Module[{t, x, y, fun, xf, yf, a}, x = -.5; y = 1;
fun[a_, b_, c_, x_, y_] :=
Point[{#[[1]] + x, #[[2]] + y} &[
Part[CirclePoints[360] c,
If[a + b == 360, 360, Mod[a + b, 360]]]]];
xf[t_, a_, b_] := a t - b Sin[t]; yf[t_, a_, b_] := a - b Cos[t];
Animate[
Show[
Graphics[
{PointSize[.01], tab[[a]]},
PlotRange -> {{-1 - x, 10 + x}, {-1 - y, 1}}
],
ParametricPlot[
{(Pi/2) xf[t + 2 Pi a/24, 1.25, .6] - 4 Pi a/24 - Pi^2 + .05,
2.05 - 1.65 yf[t + 2 Pi a/24, 1.25, .6]},
{t, -4 Pi, 4 Pi}, Axes -> False
]
],
{a, 1, 24, 1}, ControlPlacement -> Top, AnimationRate -> 5,
AnimationDirection -> Backward
]
]
which is not very efficient (I'm sure Part
could be applied more efficiently), and despite various tweeks, I couldn't quite manage to get the cycloid to line up with the points.
What is a better way to approach this?
performance-tuning animation
$endgroup$
Further to this question I found on MSE, I tried to replicate
from here
this is as far as I got:
fun[a_, b_, c_, x_, y_] :=
Point[{#[[1]] + x, #[[2]] + y} &[
Part[CirclePoints[360] c,
If[a + b == 360, 360, Mod[a + b, 360]]]]];
tab = With[{a = #},
Flatten[Table[
Table[fun[a, 90 + 15 n, 1 - .15 m, -1 + .5 n, -.35 m], {m, 0,
10}], {n, 0, 24}], 1]] & /@ Range[1, 360, 15];
Module[{t, x, y, fun, xf, yf, a}, x = -.5; y = 1;
fun[a_, b_, c_, x_, y_] :=
Point[{#[[1]] + x, #[[2]] + y} &[
Part[CirclePoints[360] c,
If[a + b == 360, 360, Mod[a + b, 360]]]]];
xf[t_, a_, b_] := a t - b Sin[t]; yf[t_, a_, b_] := a - b Cos[t];
Animate[
Show[
Graphics[
{PointSize[.01], tab[[a]]},
PlotRange -> {{-1 - x, 10 + x}, {-1 - y, 1}}
],
ParametricPlot[
{(Pi/2) xf[t + 2 Pi a/24, 1.25, .6] - 4 Pi a/24 - Pi^2 + .05,
2.05 - 1.65 yf[t + 2 Pi a/24, 1.25, .6]},
{t, -4 Pi, 4 Pi}, Axes -> False
]
],
{a, 1, 24, 1}, ControlPlacement -> Top, AnimationRate -> 5,
AnimationDirection -> Backward
]
]
which is not very efficient (I'm sure Part
could be applied more efficiently), and despite various tweeks, I couldn't quite manage to get the cycloid to line up with the points.
What is a better way to approach this?
performance-tuning animation
performance-tuning animation
edited 2 days ago
Kuba♦
107k12210530
107k12210530
asked 2 days ago
martinmartin
4,01821249
4,01821249
$begingroup$
See this: mathematica.stackexchange.com/questions/123127/…
$endgroup$
– LCarvalho
2 days ago
add a comment |
$begingroup$
See this: mathematica.stackexchange.com/questions/123127/…
$endgroup$
– LCarvalho
2 days ago
$begingroup$
See this: mathematica.stackexchange.com/questions/123127/…
$endgroup$
– LCarvalho
2 days ago
$begingroup$
See this: mathematica.stackexchange.com/questions/123127/…
$endgroup$
– LCarvalho
2 days ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
DynamicModule[{t = 0, d = 5, a = .08, base, distortion, pts, r, f, n = 10},
r[y_] := .08 y^4;
f[x_] := -2 Pi Dynamic[t] + d x;
(*f does not evaluate to a number but FE will take care of that later*)
base = Array[List, n {3, 1}, {{0, Pi}, {0, 1}} ];
distortion = Array[
Function[{x, y}, r[y] {Cos @ f @ x, Sin @ f @ x}], n {3, 1}, {{0, Pi}, {0, 1}}
];
pts = base + distortion;
Row[{
Animator[Dynamic @ t, AnimationRate -> .8, AppearanceElements -> {}],
Graphics[{
LightBlue,
Polygon @ Join[ pts[[;; , -1]], {Scaled[{1, 0}], Scaled[{0, 0}]}],
Darker @ Blue, AbsolutePointSize @ 5, Point @ Catenate @ pts,
AbsolutePointSize @ 7, Orange, Thick,
Point @ pts[[15, -1]], Circle[base[[15, -1]], r @ base[[15, -1, 2]]],
Point @ pts[[15, 7]], Circle[base[[15, 7]], r @ base[[15, 7, 2]]]
},
PlotRange -> {{0 + .1, Pi - .1}, {0, 1.2}},
PlotRangePadding -> 0,
PlotRangeClipping -> True, ImageSize -> 800]
}]
]
$endgroup$
$begingroup$
thanks - a vastly better approach!
$endgroup$
– martin
2 days ago
$begingroup$
@martin thanks, let me know if anything is not clear.
$endgroup$
– Kuba♦
yesterday
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193480%2fanimating-wave-motion-in-water%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
DynamicModule[{t = 0, d = 5, a = .08, base, distortion, pts, r, f, n = 10},
r[y_] := .08 y^4;
f[x_] := -2 Pi Dynamic[t] + d x;
(*f does not evaluate to a number but FE will take care of that later*)
base = Array[List, n {3, 1}, {{0, Pi}, {0, 1}} ];
distortion = Array[
Function[{x, y}, r[y] {Cos @ f @ x, Sin @ f @ x}], n {3, 1}, {{0, Pi}, {0, 1}}
];
pts = base + distortion;
Row[{
Animator[Dynamic @ t, AnimationRate -> .8, AppearanceElements -> {}],
Graphics[{
LightBlue,
Polygon @ Join[ pts[[;; , -1]], {Scaled[{1, 0}], Scaled[{0, 0}]}],
Darker @ Blue, AbsolutePointSize @ 5, Point @ Catenate @ pts,
AbsolutePointSize @ 7, Orange, Thick,
Point @ pts[[15, -1]], Circle[base[[15, -1]], r @ base[[15, -1, 2]]],
Point @ pts[[15, 7]], Circle[base[[15, 7]], r @ base[[15, 7, 2]]]
},
PlotRange -> {{0 + .1, Pi - .1}, {0, 1.2}},
PlotRangePadding -> 0,
PlotRangeClipping -> True, ImageSize -> 800]
}]
]
$endgroup$
$begingroup$
thanks - a vastly better approach!
$endgroup$
– martin
2 days ago
$begingroup$
@martin thanks, let me know if anything is not clear.
$endgroup$
– Kuba♦
yesterday
add a comment |
$begingroup$
DynamicModule[{t = 0, d = 5, a = .08, base, distortion, pts, r, f, n = 10},
r[y_] := .08 y^4;
f[x_] := -2 Pi Dynamic[t] + d x;
(*f does not evaluate to a number but FE will take care of that later*)
base = Array[List, n {3, 1}, {{0, Pi}, {0, 1}} ];
distortion = Array[
Function[{x, y}, r[y] {Cos @ f @ x, Sin @ f @ x}], n {3, 1}, {{0, Pi}, {0, 1}}
];
pts = base + distortion;
Row[{
Animator[Dynamic @ t, AnimationRate -> .8, AppearanceElements -> {}],
Graphics[{
LightBlue,
Polygon @ Join[ pts[[;; , -1]], {Scaled[{1, 0}], Scaled[{0, 0}]}],
Darker @ Blue, AbsolutePointSize @ 5, Point @ Catenate @ pts,
AbsolutePointSize @ 7, Orange, Thick,
Point @ pts[[15, -1]], Circle[base[[15, -1]], r @ base[[15, -1, 2]]],
Point @ pts[[15, 7]], Circle[base[[15, 7]], r @ base[[15, 7, 2]]]
},
PlotRange -> {{0 + .1, Pi - .1}, {0, 1.2}},
PlotRangePadding -> 0,
PlotRangeClipping -> True, ImageSize -> 800]
}]
]
$endgroup$
$begingroup$
thanks - a vastly better approach!
$endgroup$
– martin
2 days ago
$begingroup$
@martin thanks, let me know if anything is not clear.
$endgroup$
– Kuba♦
yesterday
add a comment |
$begingroup$
DynamicModule[{t = 0, d = 5, a = .08, base, distortion, pts, r, f, n = 10},
r[y_] := .08 y^4;
f[x_] := -2 Pi Dynamic[t] + d x;
(*f does not evaluate to a number but FE will take care of that later*)
base = Array[List, n {3, 1}, {{0, Pi}, {0, 1}} ];
distortion = Array[
Function[{x, y}, r[y] {Cos @ f @ x, Sin @ f @ x}], n {3, 1}, {{0, Pi}, {0, 1}}
];
pts = base + distortion;
Row[{
Animator[Dynamic @ t, AnimationRate -> .8, AppearanceElements -> {}],
Graphics[{
LightBlue,
Polygon @ Join[ pts[[;; , -1]], {Scaled[{1, 0}], Scaled[{0, 0}]}],
Darker @ Blue, AbsolutePointSize @ 5, Point @ Catenate @ pts,
AbsolutePointSize @ 7, Orange, Thick,
Point @ pts[[15, -1]], Circle[base[[15, -1]], r @ base[[15, -1, 2]]],
Point @ pts[[15, 7]], Circle[base[[15, 7]], r @ base[[15, 7, 2]]]
},
PlotRange -> {{0 + .1, Pi - .1}, {0, 1.2}},
PlotRangePadding -> 0,
PlotRangeClipping -> True, ImageSize -> 800]
}]
]
$endgroup$
DynamicModule[{t = 0, d = 5, a = .08, base, distortion, pts, r, f, n = 10},
r[y_] := .08 y^4;
f[x_] := -2 Pi Dynamic[t] + d x;
(*f does not evaluate to a number but FE will take care of that later*)
base = Array[List, n {3, 1}, {{0, Pi}, {0, 1}} ];
distortion = Array[
Function[{x, y}, r[y] {Cos @ f @ x, Sin @ f @ x}], n {3, 1}, {{0, Pi}, {0, 1}}
];
pts = base + distortion;
Row[{
Animator[Dynamic @ t, AnimationRate -> .8, AppearanceElements -> {}],
Graphics[{
LightBlue,
Polygon @ Join[ pts[[;; , -1]], {Scaled[{1, 0}], Scaled[{0, 0}]}],
Darker @ Blue, AbsolutePointSize @ 5, Point @ Catenate @ pts,
AbsolutePointSize @ 7, Orange, Thick,
Point @ pts[[15, -1]], Circle[base[[15, -1]], r @ base[[15, -1, 2]]],
Point @ pts[[15, 7]], Circle[base[[15, 7]], r @ base[[15, 7, 2]]]
},
PlotRange -> {{0 + .1, Pi - .1}, {0, 1.2}},
PlotRangePadding -> 0,
PlotRangeClipping -> True, ImageSize -> 800]
}]
]
edited 2 days ago
answered 2 days ago
Kuba♦Kuba
107k12210530
107k12210530
$begingroup$
thanks - a vastly better approach!
$endgroup$
– martin
2 days ago
$begingroup$
@martin thanks, let me know if anything is not clear.
$endgroup$
– Kuba♦
yesterday
add a comment |
$begingroup$
thanks - a vastly better approach!
$endgroup$
– martin
2 days ago
$begingroup$
@martin thanks, let me know if anything is not clear.
$endgroup$
– Kuba♦
yesterday
$begingroup$
thanks - a vastly better approach!
$endgroup$
– martin
2 days ago
$begingroup$
thanks - a vastly better approach!
$endgroup$
– martin
2 days ago
$begingroup$
@martin thanks, let me know if anything is not clear.
$endgroup$
– Kuba♦
yesterday
$begingroup$
@martin thanks, let me know if anything is not clear.
$endgroup$
– Kuba♦
yesterday
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193480%2fanimating-wave-motion-in-water%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
See this: mathematica.stackexchange.com/questions/123127/…
$endgroup$
– LCarvalho
2 days ago