Computation of a limit involving a series (related to Poisson distribution)












2












$begingroup$


Consider $lambda >0.$ I am reading a paper and the author states that



$$ displaystylelim_{v rightarrow +infty} sum_{n=0}^{+infty} frac{lambda^{n}}{(n !)^v} = 1 + lambda$$



I tried to compute such limit but I am getting anywhere. Someone could help me?



Thanks in advance!










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    Consider $lambda >0.$ I am reading a paper and the author states that



    $$ displaystylelim_{v rightarrow +infty} sum_{n=0}^{+infty} frac{lambda^{n}}{(n !)^v} = 1 + lambda$$



    I tried to compute such limit but I am getting anywhere. Someone could help me?



    Thanks in advance!










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      Consider $lambda >0.$ I am reading a paper and the author states that



      $$ displaystylelim_{v rightarrow +infty} sum_{n=0}^{+infty} frac{lambda^{n}}{(n !)^v} = 1 + lambda$$



      I tried to compute such limit but I am getting anywhere. Someone could help me?



      Thanks in advance!










      share|cite|improve this question









      $endgroup$




      Consider $lambda >0.$ I am reading a paper and the author states that



      $$ displaystylelim_{v rightarrow +infty} sum_{n=0}^{+infty} frac{lambda^{n}}{(n !)^v} = 1 + lambda$$



      I tried to compute such limit but I am getting anywhere. Someone could help me?



      Thanks in advance!







      analysis statistics






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 days ago









      math studentmath student

      2,39111018




      2,39111018






















          2 Answers
          2






          active

          oldest

          votes


















          6












          $begingroup$

          Note that $$sum_{n=0}^{+infty} frac{lambda^{n}}{(n !)^v}=1+lambda+sum_{n=2}^{+infty} frac{lambda^{n}}{(n !)^v}$$and $$sum_{n=2}^{+infty} frac{lambda^{n}}{(n !)^v}{le sum_{n=2}^{+infty} frac{lambda^{n}}{n !}sum_{n=2}^{+infty} frac{1}{(n !)^{v-1}}\le e^{lambda}sum_{n=2}^{infty}{1over 2^{(n-1)(v-1)}}\=e^lambda{{1over 2^{v-1}}over 1-{1over 2^{v-1}}}\={e^lambdaover 2^{v-1}-1}\to 0}$$hence the result.






          share|cite|improve this answer









          $endgroup$





















            2












            $begingroup$

            The RHS is obviously the first two terms of the sum. For the remaining terms, replace $n!$ by $2^n$. Then, whatever $lambda$, for a sufficiently large $v$, you have a convergent geometric series (that tends to zero as $v to infty$).






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3152752%2fcomputation-of-a-limit-involving-a-series-related-to-poisson-distribution%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              6












              $begingroup$

              Note that $$sum_{n=0}^{+infty} frac{lambda^{n}}{(n !)^v}=1+lambda+sum_{n=2}^{+infty} frac{lambda^{n}}{(n !)^v}$$and $$sum_{n=2}^{+infty} frac{lambda^{n}}{(n !)^v}{le sum_{n=2}^{+infty} frac{lambda^{n}}{n !}sum_{n=2}^{+infty} frac{1}{(n !)^{v-1}}\le e^{lambda}sum_{n=2}^{infty}{1over 2^{(n-1)(v-1)}}\=e^lambda{{1over 2^{v-1}}over 1-{1over 2^{v-1}}}\={e^lambdaover 2^{v-1}-1}\to 0}$$hence the result.






              share|cite|improve this answer









              $endgroup$


















                6












                $begingroup$

                Note that $$sum_{n=0}^{+infty} frac{lambda^{n}}{(n !)^v}=1+lambda+sum_{n=2}^{+infty} frac{lambda^{n}}{(n !)^v}$$and $$sum_{n=2}^{+infty} frac{lambda^{n}}{(n !)^v}{le sum_{n=2}^{+infty} frac{lambda^{n}}{n !}sum_{n=2}^{+infty} frac{1}{(n !)^{v-1}}\le e^{lambda}sum_{n=2}^{infty}{1over 2^{(n-1)(v-1)}}\=e^lambda{{1over 2^{v-1}}over 1-{1over 2^{v-1}}}\={e^lambdaover 2^{v-1}-1}\to 0}$$hence the result.






                share|cite|improve this answer









                $endgroup$
















                  6












                  6








                  6





                  $begingroup$

                  Note that $$sum_{n=0}^{+infty} frac{lambda^{n}}{(n !)^v}=1+lambda+sum_{n=2}^{+infty} frac{lambda^{n}}{(n !)^v}$$and $$sum_{n=2}^{+infty} frac{lambda^{n}}{(n !)^v}{le sum_{n=2}^{+infty} frac{lambda^{n}}{n !}sum_{n=2}^{+infty} frac{1}{(n !)^{v-1}}\le e^{lambda}sum_{n=2}^{infty}{1over 2^{(n-1)(v-1)}}\=e^lambda{{1over 2^{v-1}}over 1-{1over 2^{v-1}}}\={e^lambdaover 2^{v-1}-1}\to 0}$$hence the result.






                  share|cite|improve this answer









                  $endgroup$



                  Note that $$sum_{n=0}^{+infty} frac{lambda^{n}}{(n !)^v}=1+lambda+sum_{n=2}^{+infty} frac{lambda^{n}}{(n !)^v}$$and $$sum_{n=2}^{+infty} frac{lambda^{n}}{(n !)^v}{le sum_{n=2}^{+infty} frac{lambda^{n}}{n !}sum_{n=2}^{+infty} frac{1}{(n !)^{v-1}}\le e^{lambda}sum_{n=2}^{infty}{1over 2^{(n-1)(v-1)}}\=e^lambda{{1over 2^{v-1}}over 1-{1over 2^{v-1}}}\={e^lambdaover 2^{v-1}-1}\to 0}$$hence the result.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 2 days ago









                  Mostafa AyazMostafa Ayaz

                  17k3939




                  17k3939























                      2












                      $begingroup$

                      The RHS is obviously the first two terms of the sum. For the remaining terms, replace $n!$ by $2^n$. Then, whatever $lambda$, for a sufficiently large $v$, you have a convergent geometric series (that tends to zero as $v to infty$).






                      share|cite|improve this answer









                      $endgroup$


















                        2












                        $begingroup$

                        The RHS is obviously the first two terms of the sum. For the remaining terms, replace $n!$ by $2^n$. Then, whatever $lambda$, for a sufficiently large $v$, you have a convergent geometric series (that tends to zero as $v to infty$).






                        share|cite|improve this answer









                        $endgroup$
















                          2












                          2








                          2





                          $begingroup$

                          The RHS is obviously the first two terms of the sum. For the remaining terms, replace $n!$ by $2^n$. Then, whatever $lambda$, for a sufficiently large $v$, you have a convergent geometric series (that tends to zero as $v to infty$).






                          share|cite|improve this answer









                          $endgroup$



                          The RHS is obviously the first two terms of the sum. For the remaining terms, replace $n!$ by $2^n$. Then, whatever $lambda$, for a sufficiently large $v$, you have a convergent geometric series (that tends to zero as $v to infty$).







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 2 days ago









                          user66081user66081

                          3,2581126




                          3,2581126






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3152752%2fcomputation-of-a-limit-involving-a-series-related-to-poisson-distribution%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Plaza Victoria

                              Puebla de Zaragoza

                              Musa