Convergence of the expected value of bounded random variables












0












$begingroup$


Let $X_n$ be a sequence of bounded random variable such that
$$
mathbb{E}left[X_nright]tomathbb{E}left[Xright]
$$

with $X$ a bounded random variable. Can I conclude that



$$
mathbb{E}left[X_n,Wright]tomathbb{E}left[X,Wright]
$$



for any bounded random variable $W$ ?










share|cite|improve this question









$endgroup$












  • $begingroup$
    @nicomezi in my counterexample we even have $X_nstackrel{d}{=}X$ for every $n$.
    $endgroup$
    – drhab
    Dec 21 '18 at 11:26










  • $begingroup$
    I meant $X_n overset{P} to X$ indeed, made a confusion. @drhab.
    $endgroup$
    – nicomezi
    Dec 21 '18 at 11:31
















0












$begingroup$


Let $X_n$ be a sequence of bounded random variable such that
$$
mathbb{E}left[X_nright]tomathbb{E}left[Xright]
$$

with $X$ a bounded random variable. Can I conclude that



$$
mathbb{E}left[X_n,Wright]tomathbb{E}left[X,Wright]
$$



for any bounded random variable $W$ ?










share|cite|improve this question









$endgroup$












  • $begingroup$
    @nicomezi in my counterexample we even have $X_nstackrel{d}{=}X$ for every $n$.
    $endgroup$
    – drhab
    Dec 21 '18 at 11:26










  • $begingroup$
    I meant $X_n overset{P} to X$ indeed, made a confusion. @drhab.
    $endgroup$
    – nicomezi
    Dec 21 '18 at 11:31














0












0








0





$begingroup$


Let $X_n$ be a sequence of bounded random variable such that
$$
mathbb{E}left[X_nright]tomathbb{E}left[Xright]
$$

with $X$ a bounded random variable. Can I conclude that



$$
mathbb{E}left[X_n,Wright]tomathbb{E}left[X,Wright]
$$



for any bounded random variable $W$ ?










share|cite|improve this question









$endgroup$




Let $X_n$ be a sequence of bounded random variable such that
$$
mathbb{E}left[X_nright]tomathbb{E}left[Xright]
$$

with $X$ a bounded random variable. Can I conclude that



$$
mathbb{E}left[X_n,Wright]tomathbb{E}left[X,Wright]
$$



for any bounded random variable $W$ ?







convergence random-variables expected-value






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 21 '18 at 11:13









AlmostSureUserAlmostSureUser

331418




331418












  • $begingroup$
    @nicomezi in my counterexample we even have $X_nstackrel{d}{=}X$ for every $n$.
    $endgroup$
    – drhab
    Dec 21 '18 at 11:26










  • $begingroup$
    I meant $X_n overset{P} to X$ indeed, made a confusion. @drhab.
    $endgroup$
    – nicomezi
    Dec 21 '18 at 11:31


















  • $begingroup$
    @nicomezi in my counterexample we even have $X_nstackrel{d}{=}X$ for every $n$.
    $endgroup$
    – drhab
    Dec 21 '18 at 11:26










  • $begingroup$
    I meant $X_n overset{P} to X$ indeed, made a confusion. @drhab.
    $endgroup$
    – nicomezi
    Dec 21 '18 at 11:31
















$begingroup$
@nicomezi in my counterexample we even have $X_nstackrel{d}{=}X$ for every $n$.
$endgroup$
– drhab
Dec 21 '18 at 11:26




$begingroup$
@nicomezi in my counterexample we even have $X_nstackrel{d}{=}X$ for every $n$.
$endgroup$
– drhab
Dec 21 '18 at 11:26












$begingroup$
I meant $X_n overset{P} to X$ indeed, made a confusion. @drhab.
$endgroup$
– nicomezi
Dec 21 '18 at 11:31




$begingroup$
I meant $X_n overset{P} to X$ indeed, made a confusion. @drhab.
$endgroup$
– nicomezi
Dec 21 '18 at 11:31










2 Answers
2






active

oldest

votes


















2












$begingroup$

No.



Throw a fair coin and for every $n$ let $X_n=1$ if it lands on heads and $X_n=0$ otherwise.



Let $X=1$ if it lands on tails and $X=0$ otherwise.



Then let $W=X$ so that $X_nW=0$ and $XW=X$.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Let $X$ have uniform distribution on $(-1,1)$, $X_n=-X$ for all $n$ and $W=X$. Then $EX_n W=-1/3$ for all $n$ and $EXW=1/3$ even though $EX_n =0 to 0=EX$.






    share|cite|improve this answer









    $endgroup$














      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048408%2fconvergence-of-the-expected-value-of-bounded-random-variables%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      No.



      Throw a fair coin and for every $n$ let $X_n=1$ if it lands on heads and $X_n=0$ otherwise.



      Let $X=1$ if it lands on tails and $X=0$ otherwise.



      Then let $W=X$ so that $X_nW=0$ and $XW=X$.






      share|cite|improve this answer









      $endgroup$


















        2












        $begingroup$

        No.



        Throw a fair coin and for every $n$ let $X_n=1$ if it lands on heads and $X_n=0$ otherwise.



        Let $X=1$ if it lands on tails and $X=0$ otherwise.



        Then let $W=X$ so that $X_nW=0$ and $XW=X$.






        share|cite|improve this answer









        $endgroup$
















          2












          2








          2





          $begingroup$

          No.



          Throw a fair coin and for every $n$ let $X_n=1$ if it lands on heads and $X_n=0$ otherwise.



          Let $X=1$ if it lands on tails and $X=0$ otherwise.



          Then let $W=X$ so that $X_nW=0$ and $XW=X$.






          share|cite|improve this answer









          $endgroup$



          No.



          Throw a fair coin and for every $n$ let $X_n=1$ if it lands on heads and $X_n=0$ otherwise.



          Let $X=1$ if it lands on tails and $X=0$ otherwise.



          Then let $W=X$ so that $X_nW=0$ and $XW=X$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 21 '18 at 11:22









          drhabdrhab

          104k545136




          104k545136























              1












              $begingroup$

              Let $X$ have uniform distribution on $(-1,1)$, $X_n=-X$ for all $n$ and $W=X$. Then $EX_n W=-1/3$ for all $n$ and $EXW=1/3$ even though $EX_n =0 to 0=EX$.






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Let $X$ have uniform distribution on $(-1,1)$, $X_n=-X$ for all $n$ and $W=X$. Then $EX_n W=-1/3$ for all $n$ and $EXW=1/3$ even though $EX_n =0 to 0=EX$.






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Let $X$ have uniform distribution on $(-1,1)$, $X_n=-X$ for all $n$ and $W=X$. Then $EX_n W=-1/3$ for all $n$ and $EXW=1/3$ even though $EX_n =0 to 0=EX$.






                  share|cite|improve this answer









                  $endgroup$



                  Let $X$ have uniform distribution on $(-1,1)$, $X_n=-X$ for all $n$ and $W=X$. Then $EX_n W=-1/3$ for all $n$ and $EXW=1/3$ even though $EX_n =0 to 0=EX$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 21 '18 at 11:51









                  Kavi Rama MurthyKavi Rama Murthy

                  74.4k53270




                  74.4k53270






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048408%2fconvergence-of-the-expected-value-of-bounded-random-variables%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Plaza Victoria

                      Puebla de Zaragoza

                      Musa