Find the extremas of $f(x,y,z)=xyz-x^2-y^2-z^2$
$begingroup$
Find the extremas of $f(x,y,z)=xyz-x^2-y^2-z^2$.
After some calculation, $Df(x,y,z)=0$ for and only for $$
\p_1=(0,0,0), p_2=(2,2,2),p_3=(-2,-2,2),p_4=(-2,2,-2),p_5=(2,-2,-2)
\ H(f)=begin{vmatrix}
-2 &z &y \
z & -2 &x \
y & x &-2
end{vmatrix}
$$
So this test helps only for the maxima $p_1$. About the other critical points, I've tried to calculate $f(x,y,z)-f(x+varepsilon ,y,z)$ but both for positive and negative $varepsilon$ the sign remains the same.
calculus multivariable-calculus hessian-matrix
$endgroup$
add a comment |
$begingroup$
Find the extremas of $f(x,y,z)=xyz-x^2-y^2-z^2$.
After some calculation, $Df(x,y,z)=0$ for and only for $$
\p_1=(0,0,0), p_2=(2,2,2),p_3=(-2,-2,2),p_4=(-2,2,-2),p_5=(2,-2,-2)
\ H(f)=begin{vmatrix}
-2 &z &y \
z & -2 &x \
y & x &-2
end{vmatrix}
$$
So this test helps only for the maxima $p_1$. About the other critical points, I've tried to calculate $f(x,y,z)-f(x+varepsilon ,y,z)$ but both for positive and negative $varepsilon$ the sign remains the same.
calculus multivariable-calculus hessian-matrix
$endgroup$
add a comment |
$begingroup$
Find the extremas of $f(x,y,z)=xyz-x^2-y^2-z^2$.
After some calculation, $Df(x,y,z)=0$ for and only for $$
\p_1=(0,0,0), p_2=(2,2,2),p_3=(-2,-2,2),p_4=(-2,2,-2),p_5=(2,-2,-2)
\ H(f)=begin{vmatrix}
-2 &z &y \
z & -2 &x \
y & x &-2
end{vmatrix}
$$
So this test helps only for the maxima $p_1$. About the other critical points, I've tried to calculate $f(x,y,z)-f(x+varepsilon ,y,z)$ but both for positive and negative $varepsilon$ the sign remains the same.
calculus multivariable-calculus hessian-matrix
$endgroup$
Find the extremas of $f(x,y,z)=xyz-x^2-y^2-z^2$.
After some calculation, $Df(x,y,z)=0$ for and only for $$
\p_1=(0,0,0), p_2=(2,2,2),p_3=(-2,-2,2),p_4=(-2,2,-2),p_5=(2,-2,-2)
\ H(f)=begin{vmatrix}
-2 &z &y \
z & -2 &x \
y & x &-2
end{vmatrix}
$$
So this test helps only for the maxima $p_1$. About the other critical points, I've tried to calculate $f(x,y,z)-f(x+varepsilon ,y,z)$ but both for positive and negative $varepsilon$ the sign remains the same.
calculus multivariable-calculus hessian-matrix
calculus multivariable-calculus hessian-matrix
asked Dec 21 '18 at 12:25
J. DoeJ. Doe
14713
14713
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Take the point $p_2$. Then your matrix is$$begin{bmatrix}-2&2&2\2&-2&2\2&2&-2end{bmatrix},$$whose eigenvalues are $-4$ (twice) and $2$. So, $p_2$ is a saddle point of $f$. Apply the same approach to the other critical points.
$endgroup$
$begingroup$
If $H(f)$ at a point $p$ has 2 same eigenvalues then $p$ is a saddle point? @jos
$endgroup$
– J. Doe
Dec 21 '18 at 12:32
1
$begingroup$
No. It's bacause at least one eigenvalue is positice, at least one eigenvalue is negative and $0$ is not an eigenvalue.
$endgroup$
– José Carlos Santos
Dec 21 '18 at 12:33
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048459%2ffind-the-extremas-of-fx-y-z-xyz-x2-y2-z2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Take the point $p_2$. Then your matrix is$$begin{bmatrix}-2&2&2\2&-2&2\2&2&-2end{bmatrix},$$whose eigenvalues are $-4$ (twice) and $2$. So, $p_2$ is a saddle point of $f$. Apply the same approach to the other critical points.
$endgroup$
$begingroup$
If $H(f)$ at a point $p$ has 2 same eigenvalues then $p$ is a saddle point? @jos
$endgroup$
– J. Doe
Dec 21 '18 at 12:32
1
$begingroup$
No. It's bacause at least one eigenvalue is positice, at least one eigenvalue is negative and $0$ is not an eigenvalue.
$endgroup$
– José Carlos Santos
Dec 21 '18 at 12:33
add a comment |
$begingroup$
Take the point $p_2$. Then your matrix is$$begin{bmatrix}-2&2&2\2&-2&2\2&2&-2end{bmatrix},$$whose eigenvalues are $-4$ (twice) and $2$. So, $p_2$ is a saddle point of $f$. Apply the same approach to the other critical points.
$endgroup$
$begingroup$
If $H(f)$ at a point $p$ has 2 same eigenvalues then $p$ is a saddle point? @jos
$endgroup$
– J. Doe
Dec 21 '18 at 12:32
1
$begingroup$
No. It's bacause at least one eigenvalue is positice, at least one eigenvalue is negative and $0$ is not an eigenvalue.
$endgroup$
– José Carlos Santos
Dec 21 '18 at 12:33
add a comment |
$begingroup$
Take the point $p_2$. Then your matrix is$$begin{bmatrix}-2&2&2\2&-2&2\2&2&-2end{bmatrix},$$whose eigenvalues are $-4$ (twice) and $2$. So, $p_2$ is a saddle point of $f$. Apply the same approach to the other critical points.
$endgroup$
Take the point $p_2$. Then your matrix is$$begin{bmatrix}-2&2&2\2&-2&2\2&2&-2end{bmatrix},$$whose eigenvalues are $-4$ (twice) and $2$. So, $p_2$ is a saddle point of $f$. Apply the same approach to the other critical points.
answered Dec 21 '18 at 12:29
José Carlos SantosJosé Carlos Santos
174k23133243
174k23133243
$begingroup$
If $H(f)$ at a point $p$ has 2 same eigenvalues then $p$ is a saddle point? @jos
$endgroup$
– J. Doe
Dec 21 '18 at 12:32
1
$begingroup$
No. It's bacause at least one eigenvalue is positice, at least one eigenvalue is negative and $0$ is not an eigenvalue.
$endgroup$
– José Carlos Santos
Dec 21 '18 at 12:33
add a comment |
$begingroup$
If $H(f)$ at a point $p$ has 2 same eigenvalues then $p$ is a saddle point? @jos
$endgroup$
– J. Doe
Dec 21 '18 at 12:32
1
$begingroup$
No. It's bacause at least one eigenvalue is positice, at least one eigenvalue is negative and $0$ is not an eigenvalue.
$endgroup$
– José Carlos Santos
Dec 21 '18 at 12:33
$begingroup$
If $H(f)$ at a point $p$ has 2 same eigenvalues then $p$ is a saddle point? @jos
$endgroup$
– J. Doe
Dec 21 '18 at 12:32
$begingroup$
If $H(f)$ at a point $p$ has 2 same eigenvalues then $p$ is a saddle point? @jos
$endgroup$
– J. Doe
Dec 21 '18 at 12:32
1
1
$begingroup$
No. It's bacause at least one eigenvalue is positice, at least one eigenvalue is negative and $0$ is not an eigenvalue.
$endgroup$
– José Carlos Santos
Dec 21 '18 at 12:33
$begingroup$
No. It's bacause at least one eigenvalue is positice, at least one eigenvalue is negative and $0$ is not an eigenvalue.
$endgroup$
– José Carlos Santos
Dec 21 '18 at 12:33
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048459%2ffind-the-extremas-of-fx-y-z-xyz-x2-y2-z2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown