Sequence of functions having a convergent subsequence
$begingroup$
let $V=$ space of all continuous functions on R with compact support endowed with $d(f,g)=(int_{-infty}^{infty}|f(t)-g(t)|^2dt)^{frac{1}{2}}$
Define $fin V$ .define $f_n=f(x-n)$ Then show that $f_n$ has no convergent subsequence.
I don't know how to start it.There is a similar version of this question.I am not getting it.Can anyone show an easier version of this
real-analysis
$endgroup$
add a comment |
$begingroup$
let $V=$ space of all continuous functions on R with compact support endowed with $d(f,g)=(int_{-infty}^{infty}|f(t)-g(t)|^2dt)^{frac{1}{2}}$
Define $fin V$ .define $f_n=f(x-n)$ Then show that $f_n$ has no convergent subsequence.
I don't know how to start it.There is a similar version of this question.I am not getting it.Can anyone show an easier version of this
real-analysis
$endgroup$
1
$begingroup$
What's your problem with the previous version
$endgroup$
– Learnmore
Jan 9 '15 at 5:48
$begingroup$
I cant understand that.Please help me
$endgroup$
– Learnmore
Jan 9 '15 at 5:49
add a comment |
$begingroup$
let $V=$ space of all continuous functions on R with compact support endowed with $d(f,g)=(int_{-infty}^{infty}|f(t)-g(t)|^2dt)^{frac{1}{2}}$
Define $fin V$ .define $f_n=f(x-n)$ Then show that $f_n$ has no convergent subsequence.
I don't know how to start it.There is a similar version of this question.I am not getting it.Can anyone show an easier version of this
real-analysis
$endgroup$
let $V=$ space of all continuous functions on R with compact support endowed with $d(f,g)=(int_{-infty}^{infty}|f(t)-g(t)|^2dt)^{frac{1}{2}}$
Define $fin V$ .define $f_n=f(x-n)$ Then show that $f_n$ has no convergent subsequence.
I don't know how to start it.There is a similar version of this question.I am not getting it.Can anyone show an easier version of this
real-analysis
real-analysis
edited Jan 9 '15 at 7:01
Mhenni Benghorbal
43.3k63775
43.3k63775
asked Jan 9 '15 at 5:47
LearnmoreLearnmore
17.9k325106
17.9k325106
1
$begingroup$
What's your problem with the previous version
$endgroup$
– Learnmore
Jan 9 '15 at 5:48
$begingroup$
I cant understand that.Please help me
$endgroup$
– Learnmore
Jan 9 '15 at 5:49
add a comment |
1
$begingroup$
What's your problem with the previous version
$endgroup$
– Learnmore
Jan 9 '15 at 5:48
$begingroup$
I cant understand that.Please help me
$endgroup$
– Learnmore
Jan 9 '15 at 5:49
1
1
$begingroup$
What's your problem with the previous version
$endgroup$
– Learnmore
Jan 9 '15 at 5:48
$begingroup$
What's your problem with the previous version
$endgroup$
– Learnmore
Jan 9 '15 at 5:48
$begingroup$
I cant understand that.Please help me
$endgroup$
– Learnmore
Jan 9 '15 at 5:49
$begingroup$
I cant understand that.Please help me
$endgroup$
– Learnmore
Jan 9 '15 at 5:49
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
It seems the following.
Let $fin V$ be an arbitrary non-zero function. Since the function $f$ is continuous, $d(f,0)>0$. Since the support $text{supp } f$ of the function $f$ is compact, there exists a number $M$ such that $text{supp } fsubset[-M,M].$ Suppose that the sequence ${f_n}$ has a convergent subsequence ${f_{n_k}}$. Then the sequence ${f_{n_k}}$ is fundamental, that is for each $varepsilon>0$ there exists a number $K=K(varepsilon)>0$ such that $d(f_{n_k}, f_{n_k’})<varepsilon$ provided $k,k’>K$. Let $k>K(sqrt{2}d(f,0))$ be an arbitrary number and $k’$ be such a number that $n_k’>n_k+2M$. Since $text{supp } f_{n_k}cap text{supp } f_{n_k’}=varnothing$,
$$d(f_{n_k}, f_{n’_k})=left(int_{-infty}^{infty}| f_{n_k}(t)-f_{n’_k}(t)|^2dtright)^{frac{1}{2}}=$$
$$left(int_{text{supp } f_{n_k}}| f_{n_k}(t)-f_{n’_k}(t)|^2dt+int_{text{supp } f_{n’_k}}| f_{n_k}(t)-f_{n’_k}(t)|^2dtright)^{frac{1}{2}}=$$ $$
left(int_{text{supp } f_{n_k}}| f_{n_k}(t)|^2dt+int_{text{supp } f_{n’_k}}|f_{n’_k}(t)|^2dtright)^{frac{1}{2}}=$$ $$
left(2int_{text{supp } f}| f (t)|^2dtright)^{frac{1}{2}}=sqrt{2}d(f,0),$$
a contradiction.
$endgroup$
$begingroup$
@ Alex im not getting how u directly write $d(f_{n_k}, f_{n_k’})=2d(f,0),$ ??
$endgroup$
– jasmine
Sep 14 '18 at 16:04
1
$begingroup$
@jasmine Thanks for your remark. I corrected and extended my answer.
$endgroup$
– Alex Ravsky
Dec 21 '18 at 7:35
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1097339%2fsequence-of-functions-having-a-convergent-subsequence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It seems the following.
Let $fin V$ be an arbitrary non-zero function. Since the function $f$ is continuous, $d(f,0)>0$. Since the support $text{supp } f$ of the function $f$ is compact, there exists a number $M$ such that $text{supp } fsubset[-M,M].$ Suppose that the sequence ${f_n}$ has a convergent subsequence ${f_{n_k}}$. Then the sequence ${f_{n_k}}$ is fundamental, that is for each $varepsilon>0$ there exists a number $K=K(varepsilon)>0$ such that $d(f_{n_k}, f_{n_k’})<varepsilon$ provided $k,k’>K$. Let $k>K(sqrt{2}d(f,0))$ be an arbitrary number and $k’$ be such a number that $n_k’>n_k+2M$. Since $text{supp } f_{n_k}cap text{supp } f_{n_k’}=varnothing$,
$$d(f_{n_k}, f_{n’_k})=left(int_{-infty}^{infty}| f_{n_k}(t)-f_{n’_k}(t)|^2dtright)^{frac{1}{2}}=$$
$$left(int_{text{supp } f_{n_k}}| f_{n_k}(t)-f_{n’_k}(t)|^2dt+int_{text{supp } f_{n’_k}}| f_{n_k}(t)-f_{n’_k}(t)|^2dtright)^{frac{1}{2}}=$$ $$
left(int_{text{supp } f_{n_k}}| f_{n_k}(t)|^2dt+int_{text{supp } f_{n’_k}}|f_{n’_k}(t)|^2dtright)^{frac{1}{2}}=$$ $$
left(2int_{text{supp } f}| f (t)|^2dtright)^{frac{1}{2}}=sqrt{2}d(f,0),$$
a contradiction.
$endgroup$
$begingroup$
@ Alex im not getting how u directly write $d(f_{n_k}, f_{n_k’})=2d(f,0),$ ??
$endgroup$
– jasmine
Sep 14 '18 at 16:04
1
$begingroup$
@jasmine Thanks for your remark. I corrected and extended my answer.
$endgroup$
– Alex Ravsky
Dec 21 '18 at 7:35
add a comment |
$begingroup$
It seems the following.
Let $fin V$ be an arbitrary non-zero function. Since the function $f$ is continuous, $d(f,0)>0$. Since the support $text{supp } f$ of the function $f$ is compact, there exists a number $M$ such that $text{supp } fsubset[-M,M].$ Suppose that the sequence ${f_n}$ has a convergent subsequence ${f_{n_k}}$. Then the sequence ${f_{n_k}}$ is fundamental, that is for each $varepsilon>0$ there exists a number $K=K(varepsilon)>0$ such that $d(f_{n_k}, f_{n_k’})<varepsilon$ provided $k,k’>K$. Let $k>K(sqrt{2}d(f,0))$ be an arbitrary number and $k’$ be such a number that $n_k’>n_k+2M$. Since $text{supp } f_{n_k}cap text{supp } f_{n_k’}=varnothing$,
$$d(f_{n_k}, f_{n’_k})=left(int_{-infty}^{infty}| f_{n_k}(t)-f_{n’_k}(t)|^2dtright)^{frac{1}{2}}=$$
$$left(int_{text{supp } f_{n_k}}| f_{n_k}(t)-f_{n’_k}(t)|^2dt+int_{text{supp } f_{n’_k}}| f_{n_k}(t)-f_{n’_k}(t)|^2dtright)^{frac{1}{2}}=$$ $$
left(int_{text{supp } f_{n_k}}| f_{n_k}(t)|^2dt+int_{text{supp } f_{n’_k}}|f_{n’_k}(t)|^2dtright)^{frac{1}{2}}=$$ $$
left(2int_{text{supp } f}| f (t)|^2dtright)^{frac{1}{2}}=sqrt{2}d(f,0),$$
a contradiction.
$endgroup$
$begingroup$
@ Alex im not getting how u directly write $d(f_{n_k}, f_{n_k’})=2d(f,0),$ ??
$endgroup$
– jasmine
Sep 14 '18 at 16:04
1
$begingroup$
@jasmine Thanks for your remark. I corrected and extended my answer.
$endgroup$
– Alex Ravsky
Dec 21 '18 at 7:35
add a comment |
$begingroup$
It seems the following.
Let $fin V$ be an arbitrary non-zero function. Since the function $f$ is continuous, $d(f,0)>0$. Since the support $text{supp } f$ of the function $f$ is compact, there exists a number $M$ such that $text{supp } fsubset[-M,M].$ Suppose that the sequence ${f_n}$ has a convergent subsequence ${f_{n_k}}$. Then the sequence ${f_{n_k}}$ is fundamental, that is for each $varepsilon>0$ there exists a number $K=K(varepsilon)>0$ such that $d(f_{n_k}, f_{n_k’})<varepsilon$ provided $k,k’>K$. Let $k>K(sqrt{2}d(f,0))$ be an arbitrary number and $k’$ be such a number that $n_k’>n_k+2M$. Since $text{supp } f_{n_k}cap text{supp } f_{n_k’}=varnothing$,
$$d(f_{n_k}, f_{n’_k})=left(int_{-infty}^{infty}| f_{n_k}(t)-f_{n’_k}(t)|^2dtright)^{frac{1}{2}}=$$
$$left(int_{text{supp } f_{n_k}}| f_{n_k}(t)-f_{n’_k}(t)|^2dt+int_{text{supp } f_{n’_k}}| f_{n_k}(t)-f_{n’_k}(t)|^2dtright)^{frac{1}{2}}=$$ $$
left(int_{text{supp } f_{n_k}}| f_{n_k}(t)|^2dt+int_{text{supp } f_{n’_k}}|f_{n’_k}(t)|^2dtright)^{frac{1}{2}}=$$ $$
left(2int_{text{supp } f}| f (t)|^2dtright)^{frac{1}{2}}=sqrt{2}d(f,0),$$
a contradiction.
$endgroup$
It seems the following.
Let $fin V$ be an arbitrary non-zero function. Since the function $f$ is continuous, $d(f,0)>0$. Since the support $text{supp } f$ of the function $f$ is compact, there exists a number $M$ such that $text{supp } fsubset[-M,M].$ Suppose that the sequence ${f_n}$ has a convergent subsequence ${f_{n_k}}$. Then the sequence ${f_{n_k}}$ is fundamental, that is for each $varepsilon>0$ there exists a number $K=K(varepsilon)>0$ such that $d(f_{n_k}, f_{n_k’})<varepsilon$ provided $k,k’>K$. Let $k>K(sqrt{2}d(f,0))$ be an arbitrary number and $k’$ be such a number that $n_k’>n_k+2M$. Since $text{supp } f_{n_k}cap text{supp } f_{n_k’}=varnothing$,
$$d(f_{n_k}, f_{n’_k})=left(int_{-infty}^{infty}| f_{n_k}(t)-f_{n’_k}(t)|^2dtright)^{frac{1}{2}}=$$
$$left(int_{text{supp } f_{n_k}}| f_{n_k}(t)-f_{n’_k}(t)|^2dt+int_{text{supp } f_{n’_k}}| f_{n_k}(t)-f_{n’_k}(t)|^2dtright)^{frac{1}{2}}=$$ $$
left(int_{text{supp } f_{n_k}}| f_{n_k}(t)|^2dt+int_{text{supp } f_{n’_k}}|f_{n’_k}(t)|^2dtright)^{frac{1}{2}}=$$ $$
left(2int_{text{supp } f}| f (t)|^2dtright)^{frac{1}{2}}=sqrt{2}d(f,0),$$
a contradiction.
edited Dec 21 '18 at 7:34
answered Jan 22 '15 at 20:20
Alex RavskyAlex Ravsky
43.1k32583
43.1k32583
$begingroup$
@ Alex im not getting how u directly write $d(f_{n_k}, f_{n_k’})=2d(f,0),$ ??
$endgroup$
– jasmine
Sep 14 '18 at 16:04
1
$begingroup$
@jasmine Thanks for your remark. I corrected and extended my answer.
$endgroup$
– Alex Ravsky
Dec 21 '18 at 7:35
add a comment |
$begingroup$
@ Alex im not getting how u directly write $d(f_{n_k}, f_{n_k’})=2d(f,0),$ ??
$endgroup$
– jasmine
Sep 14 '18 at 16:04
1
$begingroup$
@jasmine Thanks for your remark. I corrected and extended my answer.
$endgroup$
– Alex Ravsky
Dec 21 '18 at 7:35
$begingroup$
@ Alex im not getting how u directly write $d(f_{n_k}, f_{n_k’})=2d(f,0),$ ??
$endgroup$
– jasmine
Sep 14 '18 at 16:04
$begingroup$
@ Alex im not getting how u directly write $d(f_{n_k}, f_{n_k’})=2d(f,0),$ ??
$endgroup$
– jasmine
Sep 14 '18 at 16:04
1
1
$begingroup$
@jasmine Thanks for your remark. I corrected and extended my answer.
$endgroup$
– Alex Ravsky
Dec 21 '18 at 7:35
$begingroup$
@jasmine Thanks for your remark. I corrected and extended my answer.
$endgroup$
– Alex Ravsky
Dec 21 '18 at 7:35
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1097339%2fsequence-of-functions-having-a-convergent-subsequence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
What's your problem with the previous version
$endgroup$
– Learnmore
Jan 9 '15 at 5:48
$begingroup$
I cant understand that.Please help me
$endgroup$
– Learnmore
Jan 9 '15 at 5:49