Is it possible for a square root function,f(x), to map to a finite number of integers for all x in domain of...












2












$begingroup$


Consider the equation $$f(x) =sqrt{x^2 - x + 1}$$



Using python I checked x for $$ -100000000 leq x leq 100000000$$



and have only found two values of x, x = 0 and x = 1 that map to integers. While this range is quite large I am skeptical there is no other x that will map to an integer. How would one go about proving the choices for x that map to an integer given some square root function is finite or infinite?



Edit: $$x in mathbb{Z}$$










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    To be clear, $x$ is an integer here? By convention, if not otherwise specified, $x,y$, are typically used for real numbers; $m,n$ are often used for integers.
    $endgroup$
    – Théophile
    Apr 5 at 20:08






  • 1




    $begingroup$
    Well, if $x^2-x-3=0$ (that is, if $x=(1+sqrt{13})/2$, then $x^2-x+1= 4$, hence $f(x) = 2$. So presumably, you want $x$ to be an integer? If so, you are trying to solve the quadratic diophantine equation $x^2-x+1=y^2$.
    $endgroup$
    – Arturo Magidin
    Apr 5 at 20:11










  • $begingroup$
    Justed edited, yes I meant to say $$x in mathbb{Z}$$
    $endgroup$
    – Diehardwalnut
    Apr 5 at 21:28
















2












$begingroup$


Consider the equation $$f(x) =sqrt{x^2 - x + 1}$$



Using python I checked x for $$ -100000000 leq x leq 100000000$$



and have only found two values of x, x = 0 and x = 1 that map to integers. While this range is quite large I am skeptical there is no other x that will map to an integer. How would one go about proving the choices for x that map to an integer given some square root function is finite or infinite?



Edit: $$x in mathbb{Z}$$










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    To be clear, $x$ is an integer here? By convention, if not otherwise specified, $x,y$, are typically used for real numbers; $m,n$ are often used for integers.
    $endgroup$
    – Théophile
    Apr 5 at 20:08






  • 1




    $begingroup$
    Well, if $x^2-x-3=0$ (that is, if $x=(1+sqrt{13})/2$, then $x^2-x+1= 4$, hence $f(x) = 2$. So presumably, you want $x$ to be an integer? If so, you are trying to solve the quadratic diophantine equation $x^2-x+1=y^2$.
    $endgroup$
    – Arturo Magidin
    Apr 5 at 20:11










  • $begingroup$
    Justed edited, yes I meant to say $$x in mathbb{Z}$$
    $endgroup$
    – Diehardwalnut
    Apr 5 at 21:28














2












2








2


1



$begingroup$


Consider the equation $$f(x) =sqrt{x^2 - x + 1}$$



Using python I checked x for $$ -100000000 leq x leq 100000000$$



and have only found two values of x, x = 0 and x = 1 that map to integers. While this range is quite large I am skeptical there is no other x that will map to an integer. How would one go about proving the choices for x that map to an integer given some square root function is finite or infinite?



Edit: $$x in mathbb{Z}$$










share|cite|improve this question











$endgroup$




Consider the equation $$f(x) =sqrt{x^2 - x + 1}$$



Using python I checked x for $$ -100000000 leq x leq 100000000$$



and have only found two values of x, x = 0 and x = 1 that map to integers. While this range is quite large I am skeptical there is no other x that will map to an integer. How would one go about proving the choices for x that map to an integer given some square root function is finite or infinite?



Edit: $$x in mathbb{Z}$$







elementary-number-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 5 at 21:27







Diehardwalnut

















asked Apr 5 at 20:04









DiehardwalnutDiehardwalnut

262110




262110








  • 4




    $begingroup$
    To be clear, $x$ is an integer here? By convention, if not otherwise specified, $x,y$, are typically used for real numbers; $m,n$ are often used for integers.
    $endgroup$
    – Théophile
    Apr 5 at 20:08






  • 1




    $begingroup$
    Well, if $x^2-x-3=0$ (that is, if $x=(1+sqrt{13})/2$, then $x^2-x+1= 4$, hence $f(x) = 2$. So presumably, you want $x$ to be an integer? If so, you are trying to solve the quadratic diophantine equation $x^2-x+1=y^2$.
    $endgroup$
    – Arturo Magidin
    Apr 5 at 20:11










  • $begingroup$
    Justed edited, yes I meant to say $$x in mathbb{Z}$$
    $endgroup$
    – Diehardwalnut
    Apr 5 at 21:28














  • 4




    $begingroup$
    To be clear, $x$ is an integer here? By convention, if not otherwise specified, $x,y$, are typically used for real numbers; $m,n$ are often used for integers.
    $endgroup$
    – Théophile
    Apr 5 at 20:08






  • 1




    $begingroup$
    Well, if $x^2-x-3=0$ (that is, if $x=(1+sqrt{13})/2$, then $x^2-x+1= 4$, hence $f(x) = 2$. So presumably, you want $x$ to be an integer? If so, you are trying to solve the quadratic diophantine equation $x^2-x+1=y^2$.
    $endgroup$
    – Arturo Magidin
    Apr 5 at 20:11










  • $begingroup$
    Justed edited, yes I meant to say $$x in mathbb{Z}$$
    $endgroup$
    – Diehardwalnut
    Apr 5 at 21:28








4




4




$begingroup$
To be clear, $x$ is an integer here? By convention, if not otherwise specified, $x,y$, are typically used for real numbers; $m,n$ are often used for integers.
$endgroup$
– Théophile
Apr 5 at 20:08




$begingroup$
To be clear, $x$ is an integer here? By convention, if not otherwise specified, $x,y$, are typically used for real numbers; $m,n$ are often used for integers.
$endgroup$
– Théophile
Apr 5 at 20:08




1




1




$begingroup$
Well, if $x^2-x-3=0$ (that is, if $x=(1+sqrt{13})/2$, then $x^2-x+1= 4$, hence $f(x) = 2$. So presumably, you want $x$ to be an integer? If so, you are trying to solve the quadratic diophantine equation $x^2-x+1=y^2$.
$endgroup$
– Arturo Magidin
Apr 5 at 20:11




$begingroup$
Well, if $x^2-x-3=0$ (that is, if $x=(1+sqrt{13})/2$, then $x^2-x+1= 4$, hence $f(x) = 2$. So presumably, you want $x$ to be an integer? If so, you are trying to solve the quadratic diophantine equation $x^2-x+1=y^2$.
$endgroup$
– Arturo Magidin
Apr 5 at 20:11












$begingroup$
Justed edited, yes I meant to say $$x in mathbb{Z}$$
$endgroup$
– Diehardwalnut
Apr 5 at 21:28




$begingroup$
Justed edited, yes I meant to say $$x in mathbb{Z}$$
$endgroup$
– Diehardwalnut
Apr 5 at 21:28










3 Answers
3






active

oldest

votes


















4












$begingroup$

First of all, observe that the function is defined $forall xin mathbb Z$ since $x^2+1geq2xgeq xiff x^2-x+1geq 0$.



Completing the square, we get $$x^2-x+1=(x-1)^2+color{blue}x$$



It obviously works for $x=0$. Observe now, that the nearest squares are $(x-2)^2$ and $x^2$.



Furthermore
begin{align*}(x-1)^2-(x-2)^2&=color{blue}{2x-3}tag{1}\
x^2-(x-1)^2&=color{blue}{2x-1}tag{2}
end{align*}



Can you end it now?




Hint: Observe, for instance, that $$lvert 2x-3rvert>lvert xrvert text{ unless } xin[1, 3]$$ $$lvert 2x-1rvert>lvert xrvert text{ unless } xin[frac{1}{3}, 1]$$The difference becomes then too big otherwise... Thus - and since $x$ is an integer - you just have to check the cases $xin{1, 2, 3}$.







share|cite|improve this answer











$endgroup$





















    3












    $begingroup$

    Hint: let $y = sqrt{x^2-x+1}$. Squaring both sides,
    $$y^2 = x^2-x+1,$$
    so $y^2-1=x^2-x$. That is,
    $$(y+1)(y-1) = x(x-1).$$



    So your question becomes: when can the product of two numbers with difference two (i.e., the LHS) equal the product of two numbers with difference one (i.e., the RHS)?






    share|cite|improve this answer









    $endgroup$





















      2












      $begingroup$

      Hint:



      For $x>1$, $(x-1)^2 lt x^2-x+1 lt x^2$;



      for $x<0$, $x^2<x^2-x+1<(x-1)^2$.






      share|cite|improve this answer









      $endgroup$














        Your Answer








        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176345%2fis-it-possible-for-a-square-root-function-fx-to-map-to-a-finite-number-of-int%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        4












        $begingroup$

        First of all, observe that the function is defined $forall xin mathbb Z$ since $x^2+1geq2xgeq xiff x^2-x+1geq 0$.



        Completing the square, we get $$x^2-x+1=(x-1)^2+color{blue}x$$



        It obviously works for $x=0$. Observe now, that the nearest squares are $(x-2)^2$ and $x^2$.



        Furthermore
        begin{align*}(x-1)^2-(x-2)^2&=color{blue}{2x-3}tag{1}\
        x^2-(x-1)^2&=color{blue}{2x-1}tag{2}
        end{align*}



        Can you end it now?




        Hint: Observe, for instance, that $$lvert 2x-3rvert>lvert xrvert text{ unless } xin[1, 3]$$ $$lvert 2x-1rvert>lvert xrvert text{ unless } xin[frac{1}{3}, 1]$$The difference becomes then too big otherwise... Thus - and since $x$ is an integer - you just have to check the cases $xin{1, 2, 3}$.







        share|cite|improve this answer











        $endgroup$


















          4












          $begingroup$

          First of all, observe that the function is defined $forall xin mathbb Z$ since $x^2+1geq2xgeq xiff x^2-x+1geq 0$.



          Completing the square, we get $$x^2-x+1=(x-1)^2+color{blue}x$$



          It obviously works for $x=0$. Observe now, that the nearest squares are $(x-2)^2$ and $x^2$.



          Furthermore
          begin{align*}(x-1)^2-(x-2)^2&=color{blue}{2x-3}tag{1}\
          x^2-(x-1)^2&=color{blue}{2x-1}tag{2}
          end{align*}



          Can you end it now?




          Hint: Observe, for instance, that $$lvert 2x-3rvert>lvert xrvert text{ unless } xin[1, 3]$$ $$lvert 2x-1rvert>lvert xrvert text{ unless } xin[frac{1}{3}, 1]$$The difference becomes then too big otherwise... Thus - and since $x$ is an integer - you just have to check the cases $xin{1, 2, 3}$.







          share|cite|improve this answer











          $endgroup$
















            4












            4








            4





            $begingroup$

            First of all, observe that the function is defined $forall xin mathbb Z$ since $x^2+1geq2xgeq xiff x^2-x+1geq 0$.



            Completing the square, we get $$x^2-x+1=(x-1)^2+color{blue}x$$



            It obviously works for $x=0$. Observe now, that the nearest squares are $(x-2)^2$ and $x^2$.



            Furthermore
            begin{align*}(x-1)^2-(x-2)^2&=color{blue}{2x-3}tag{1}\
            x^2-(x-1)^2&=color{blue}{2x-1}tag{2}
            end{align*}



            Can you end it now?




            Hint: Observe, for instance, that $$lvert 2x-3rvert>lvert xrvert text{ unless } xin[1, 3]$$ $$lvert 2x-1rvert>lvert xrvert text{ unless } xin[frac{1}{3}, 1]$$The difference becomes then too big otherwise... Thus - and since $x$ is an integer - you just have to check the cases $xin{1, 2, 3}$.







            share|cite|improve this answer











            $endgroup$



            First of all, observe that the function is defined $forall xin mathbb Z$ since $x^2+1geq2xgeq xiff x^2-x+1geq 0$.



            Completing the square, we get $$x^2-x+1=(x-1)^2+color{blue}x$$



            It obviously works for $x=0$. Observe now, that the nearest squares are $(x-2)^2$ and $x^2$.



            Furthermore
            begin{align*}(x-1)^2-(x-2)^2&=color{blue}{2x-3}tag{1}\
            x^2-(x-1)^2&=color{blue}{2x-1}tag{2}
            end{align*}



            Can you end it now?




            Hint: Observe, for instance, that $$lvert 2x-3rvert>lvert xrvert text{ unless } xin[1, 3]$$ $$lvert 2x-1rvert>lvert xrvert text{ unless } xin[frac{1}{3}, 1]$$The difference becomes then too big otherwise... Thus - and since $x$ is an integer - you just have to check the cases $xin{1, 2, 3}$.








            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Apr 6 at 1:51









            Carmeister

            2,8692924




            2,8692924










            answered Apr 5 at 20:14









            Dr. MathvaDr. Mathva

            3,493630




            3,493630























                3












                $begingroup$

                Hint: let $y = sqrt{x^2-x+1}$. Squaring both sides,
                $$y^2 = x^2-x+1,$$
                so $y^2-1=x^2-x$. That is,
                $$(y+1)(y-1) = x(x-1).$$



                So your question becomes: when can the product of two numbers with difference two (i.e., the LHS) equal the product of two numbers with difference one (i.e., the RHS)?






                share|cite|improve this answer









                $endgroup$


















                  3












                  $begingroup$

                  Hint: let $y = sqrt{x^2-x+1}$. Squaring both sides,
                  $$y^2 = x^2-x+1,$$
                  so $y^2-1=x^2-x$. That is,
                  $$(y+1)(y-1) = x(x-1).$$



                  So your question becomes: when can the product of two numbers with difference two (i.e., the LHS) equal the product of two numbers with difference one (i.e., the RHS)?






                  share|cite|improve this answer









                  $endgroup$
















                    3












                    3








                    3





                    $begingroup$

                    Hint: let $y = sqrt{x^2-x+1}$. Squaring both sides,
                    $$y^2 = x^2-x+1,$$
                    so $y^2-1=x^2-x$. That is,
                    $$(y+1)(y-1) = x(x-1).$$



                    So your question becomes: when can the product of two numbers with difference two (i.e., the LHS) equal the product of two numbers with difference one (i.e., the RHS)?






                    share|cite|improve this answer









                    $endgroup$



                    Hint: let $y = sqrt{x^2-x+1}$. Squaring both sides,
                    $$y^2 = x^2-x+1,$$
                    so $y^2-1=x^2-x$. That is,
                    $$(y+1)(y-1) = x(x-1).$$



                    So your question becomes: when can the product of two numbers with difference two (i.e., the LHS) equal the product of two numbers with difference one (i.e., the RHS)?







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Apr 5 at 20:14









                    ThéophileThéophile

                    20.4k13047




                    20.4k13047























                        2












                        $begingroup$

                        Hint:



                        For $x>1$, $(x-1)^2 lt x^2-x+1 lt x^2$;



                        for $x<0$, $x^2<x^2-x+1<(x-1)^2$.






                        share|cite|improve this answer









                        $endgroup$


















                          2












                          $begingroup$

                          Hint:



                          For $x>1$, $(x-1)^2 lt x^2-x+1 lt x^2$;



                          for $x<0$, $x^2<x^2-x+1<(x-1)^2$.






                          share|cite|improve this answer









                          $endgroup$
















                            2












                            2








                            2





                            $begingroup$

                            Hint:



                            For $x>1$, $(x-1)^2 lt x^2-x+1 lt x^2$;



                            for $x<0$, $x^2<x^2-x+1<(x-1)^2$.






                            share|cite|improve this answer









                            $endgroup$



                            Hint:



                            For $x>1$, $(x-1)^2 lt x^2-x+1 lt x^2$;



                            for $x<0$, $x^2<x^2-x+1<(x-1)^2$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Apr 5 at 21:49









                            J. W. TannerJ. W. Tanner

                            4,7721420




                            4,7721420






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176345%2fis-it-possible-for-a-square-root-function-fx-to-map-to-a-finite-number-of-int%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Plaza Victoria

                                Puebla de Zaragoza

                                Musa