Prove that function on naturals defined recursively is idempotent on odd numbers
$begingroup$
Consider the function $f$ on natural numbers defined by the following recursion:
- $f(1)=1$
- $f(3)=3$
- $f(2n)=f(n)$
- $f(4n+1)=2f(2n+1)-f(n)$
- $f(4n+3)=3f(2n+1)-2f(n)$
Numerical evidence shows that for odd $k$ we have $f(f(k))=k$, but I have no clue on how to prove it. Any ideas?
recurrence-relations recursion
$endgroup$
add a comment |
$begingroup$
Consider the function $f$ on natural numbers defined by the following recursion:
- $f(1)=1$
- $f(3)=3$
- $f(2n)=f(n)$
- $f(4n+1)=2f(2n+1)-f(n)$
- $f(4n+3)=3f(2n+1)-2f(n)$
Numerical evidence shows that for odd $k$ we have $f(f(k))=k$, but I have no clue on how to prove it. Any ideas?
recurrence-relations recursion
$endgroup$
add a comment |
$begingroup$
Consider the function $f$ on natural numbers defined by the following recursion:
- $f(1)=1$
- $f(3)=3$
- $f(2n)=f(n)$
- $f(4n+1)=2f(2n+1)-f(n)$
- $f(4n+3)=3f(2n+1)-2f(n)$
Numerical evidence shows that for odd $k$ we have $f(f(k))=k$, but I have no clue on how to prove it. Any ideas?
recurrence-relations recursion
$endgroup$
Consider the function $f$ on natural numbers defined by the following recursion:
- $f(1)=1$
- $f(3)=3$
- $f(2n)=f(n)$
- $f(4n+1)=2f(2n+1)-f(n)$
- $f(4n+3)=3f(2n+1)-2f(n)$
Numerical evidence shows that for odd $k$ we have $f(f(k))=k$, but I have no clue on how to prove it. Any ideas?
recurrence-relations recursion
recurrence-relations recursion
asked Dec 19 '18 at 18:37
A. BellmuntA. Bellmunt
895515
895515
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint: Consider a binary expansion of natural numbers. Take a detailed solution here https://artofproblemsolving.com/community/c6h60400p365112
$endgroup$
$begingroup$
Brilliant! Thanks a lot.
$endgroup$
– A. Bellmunt
Dec 19 '18 at 18:54
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046722%2fprove-that-function-on-naturals-defined-recursively-is-idempotent-on-odd-numbers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: Consider a binary expansion of natural numbers. Take a detailed solution here https://artofproblemsolving.com/community/c6h60400p365112
$endgroup$
$begingroup$
Brilliant! Thanks a lot.
$endgroup$
– A. Bellmunt
Dec 19 '18 at 18:54
add a comment |
$begingroup$
Hint: Consider a binary expansion of natural numbers. Take a detailed solution here https://artofproblemsolving.com/community/c6h60400p365112
$endgroup$
$begingroup$
Brilliant! Thanks a lot.
$endgroup$
– A. Bellmunt
Dec 19 '18 at 18:54
add a comment |
$begingroup$
Hint: Consider a binary expansion of natural numbers. Take a detailed solution here https://artofproblemsolving.com/community/c6h60400p365112
$endgroup$
Hint: Consider a binary expansion of natural numbers. Take a detailed solution here https://artofproblemsolving.com/community/c6h60400p365112
edited Dec 19 '18 at 18:51
answered Dec 19 '18 at 18:41
Maria MazurMaria Mazur
49.6k1361124
49.6k1361124
$begingroup$
Brilliant! Thanks a lot.
$endgroup$
– A. Bellmunt
Dec 19 '18 at 18:54
add a comment |
$begingroup$
Brilliant! Thanks a lot.
$endgroup$
– A. Bellmunt
Dec 19 '18 at 18:54
$begingroup$
Brilliant! Thanks a lot.
$endgroup$
– A. Bellmunt
Dec 19 '18 at 18:54
$begingroup$
Brilliant! Thanks a lot.
$endgroup$
– A. Bellmunt
Dec 19 '18 at 18:54
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046722%2fprove-that-function-on-naturals-defined-recursively-is-idempotent-on-odd-numbers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown