Prove that function on naturals defined recursively is idempotent on odd numbers












2












$begingroup$


Consider the function $f$ on natural numbers defined by the following recursion:




  • $f(1)=1$

  • $f(3)=3$

  • $f(2n)=f(n)$

  • $f(4n+1)=2f(2n+1)-f(n)$

  • $f(4n+3)=3f(2n+1)-2f(n)$


Numerical evidence shows that for odd $k$ we have $f(f(k))=k$, but I have no clue on how to prove it. Any ideas?










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    Consider the function $f$ on natural numbers defined by the following recursion:




    • $f(1)=1$

    • $f(3)=3$

    • $f(2n)=f(n)$

    • $f(4n+1)=2f(2n+1)-f(n)$

    • $f(4n+3)=3f(2n+1)-2f(n)$


    Numerical evidence shows that for odd $k$ we have $f(f(k))=k$, but I have no clue on how to prove it. Any ideas?










    share|cite|improve this question









    $endgroup$















      2












      2








      2


      1



      $begingroup$


      Consider the function $f$ on natural numbers defined by the following recursion:




      • $f(1)=1$

      • $f(3)=3$

      • $f(2n)=f(n)$

      • $f(4n+1)=2f(2n+1)-f(n)$

      • $f(4n+3)=3f(2n+1)-2f(n)$


      Numerical evidence shows that for odd $k$ we have $f(f(k))=k$, but I have no clue on how to prove it. Any ideas?










      share|cite|improve this question









      $endgroup$




      Consider the function $f$ on natural numbers defined by the following recursion:




      • $f(1)=1$

      • $f(3)=3$

      • $f(2n)=f(n)$

      • $f(4n+1)=2f(2n+1)-f(n)$

      • $f(4n+3)=3f(2n+1)-2f(n)$


      Numerical evidence shows that for odd $k$ we have $f(f(k))=k$, but I have no clue on how to prove it. Any ideas?







      recurrence-relations recursion






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 19 '18 at 18:37









      A. BellmuntA. Bellmunt

      895515




      895515






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Hint: Consider a binary expansion of natural numbers. Take a detailed solution here https://artofproblemsolving.com/community/c6h60400p365112






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Brilliant! Thanks a lot.
            $endgroup$
            – A. Bellmunt
            Dec 19 '18 at 18:54












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046722%2fprove-that-function-on-naturals-defined-recursively-is-idempotent-on-odd-numbers%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Hint: Consider a binary expansion of natural numbers. Take a detailed solution here https://artofproblemsolving.com/community/c6h60400p365112






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Brilliant! Thanks a lot.
            $endgroup$
            – A. Bellmunt
            Dec 19 '18 at 18:54
















          1












          $begingroup$

          Hint: Consider a binary expansion of natural numbers. Take a detailed solution here https://artofproblemsolving.com/community/c6h60400p365112






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Brilliant! Thanks a lot.
            $endgroup$
            – A. Bellmunt
            Dec 19 '18 at 18:54














          1












          1








          1





          $begingroup$

          Hint: Consider a binary expansion of natural numbers. Take a detailed solution here https://artofproblemsolving.com/community/c6h60400p365112






          share|cite|improve this answer











          $endgroup$



          Hint: Consider a binary expansion of natural numbers. Take a detailed solution here https://artofproblemsolving.com/community/c6h60400p365112







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 19 '18 at 18:51

























          answered Dec 19 '18 at 18:41









          Maria MazurMaria Mazur

          49.6k1361124




          49.6k1361124












          • $begingroup$
            Brilliant! Thanks a lot.
            $endgroup$
            – A. Bellmunt
            Dec 19 '18 at 18:54


















          • $begingroup$
            Brilliant! Thanks a lot.
            $endgroup$
            – A. Bellmunt
            Dec 19 '18 at 18:54
















          $begingroup$
          Brilliant! Thanks a lot.
          $endgroup$
          – A. Bellmunt
          Dec 19 '18 at 18:54




          $begingroup$
          Brilliant! Thanks a lot.
          $endgroup$
          – A. Bellmunt
          Dec 19 '18 at 18:54


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3046722%2fprove-that-function-on-naturals-defined-recursively-is-idempotent-on-odd-numbers%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Plaza Victoria

          Puebla de Zaragoza

          Musa