derivative of inverse matrix by itself












1












$begingroup$


Let $A$ be a matrix, supposedly $ktimes k$ matrix.
I know that
$$frac{partial A^{-1}}{partial A} = -A^{-2} $$
I do not know how I am supposed to obtain the following results using this fact. I want to know the step of
$$frac{partial a^top A^{-1} b}{partial A} = -(A^top)^{-1}ab^top (A^top)^{-1} $$
Also, I want to know the solution to
$$frac{partial (A^top)^{-1}ab^top (A^top)^{-1} }{partial A} = ? $$










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    First formula; is not it $-A^ {-2}$ ?
    $endgroup$
    – Damien
    Dec 3 '18 at 6:36










  • $begingroup$
    @Damien Yes, i editted
    $endgroup$
    – user1292919
    Dec 3 '18 at 15:26










  • $begingroup$
    Do you just know the first identity you stated or also how to obtain it? Because if so, you should be able to figure out the other identities too. However, please let us know what your attempts are.
    $endgroup$
    – James
    Dec 3 '18 at 15:41
















1












$begingroup$


Let $A$ be a matrix, supposedly $ktimes k$ matrix.
I know that
$$frac{partial A^{-1}}{partial A} = -A^{-2} $$
I do not know how I am supposed to obtain the following results using this fact. I want to know the step of
$$frac{partial a^top A^{-1} b}{partial A} = -(A^top)^{-1}ab^top (A^top)^{-1} $$
Also, I want to know the solution to
$$frac{partial (A^top)^{-1}ab^top (A^top)^{-1} }{partial A} = ? $$










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    First formula; is not it $-A^ {-2}$ ?
    $endgroup$
    – Damien
    Dec 3 '18 at 6:36










  • $begingroup$
    @Damien Yes, i editted
    $endgroup$
    – user1292919
    Dec 3 '18 at 15:26










  • $begingroup$
    Do you just know the first identity you stated or also how to obtain it? Because if so, you should be able to figure out the other identities too. However, please let us know what your attempts are.
    $endgroup$
    – James
    Dec 3 '18 at 15:41














1












1








1


1



$begingroup$


Let $A$ be a matrix, supposedly $ktimes k$ matrix.
I know that
$$frac{partial A^{-1}}{partial A} = -A^{-2} $$
I do not know how I am supposed to obtain the following results using this fact. I want to know the step of
$$frac{partial a^top A^{-1} b}{partial A} = -(A^top)^{-1}ab^top (A^top)^{-1} $$
Also, I want to know the solution to
$$frac{partial (A^top)^{-1}ab^top (A^top)^{-1} }{partial A} = ? $$










share|cite|improve this question











$endgroup$




Let $A$ be a matrix, supposedly $ktimes k$ matrix.
I know that
$$frac{partial A^{-1}}{partial A} = -A^{-2} $$
I do not know how I am supposed to obtain the following results using this fact. I want to know the step of
$$frac{partial a^top A^{-1} b}{partial A} = -(A^top)^{-1}ab^top (A^top)^{-1} $$
Also, I want to know the solution to
$$frac{partial (A^top)^{-1}ab^top (A^top)^{-1} }{partial A} = ? $$







matrix-calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 3 '18 at 15:26







user1292919

















asked Dec 3 '18 at 5:42









user1292919user1292919

760512




760512








  • 2




    $begingroup$
    First formula; is not it $-A^ {-2}$ ?
    $endgroup$
    – Damien
    Dec 3 '18 at 6:36










  • $begingroup$
    @Damien Yes, i editted
    $endgroup$
    – user1292919
    Dec 3 '18 at 15:26










  • $begingroup$
    Do you just know the first identity you stated or also how to obtain it? Because if so, you should be able to figure out the other identities too. However, please let us know what your attempts are.
    $endgroup$
    – James
    Dec 3 '18 at 15:41














  • 2




    $begingroup$
    First formula; is not it $-A^ {-2}$ ?
    $endgroup$
    – Damien
    Dec 3 '18 at 6:36










  • $begingroup$
    @Damien Yes, i editted
    $endgroup$
    – user1292919
    Dec 3 '18 at 15:26










  • $begingroup$
    Do you just know the first identity you stated or also how to obtain it? Because if so, you should be able to figure out the other identities too. However, please let us know what your attempts are.
    $endgroup$
    – James
    Dec 3 '18 at 15:41








2




2




$begingroup$
First formula; is not it $-A^ {-2}$ ?
$endgroup$
– Damien
Dec 3 '18 at 6:36




$begingroup$
First formula; is not it $-A^ {-2}$ ?
$endgroup$
– Damien
Dec 3 '18 at 6:36












$begingroup$
@Damien Yes, i editted
$endgroup$
– user1292919
Dec 3 '18 at 15:26




$begingroup$
@Damien Yes, i editted
$endgroup$
– user1292919
Dec 3 '18 at 15:26












$begingroup$
Do you just know the first identity you stated or also how to obtain it? Because if so, you should be able to figure out the other identities too. However, please let us know what your attempts are.
$endgroup$
– James
Dec 3 '18 at 15:41




$begingroup$
Do you just know the first identity you stated or also how to obtain it? Because if so, you should be able to figure out the other identities too. However, please let us know what your attempts are.
$endgroup$
– James
Dec 3 '18 at 15:41










1 Answer
1






active

oldest

votes


















4












$begingroup$

Start with the defining equation for the matrix inverse and find its differential.
$$eqalign{
I &= A^{-1}A cr
0 &= dA^{-1},A + A^{-1},dA cr
0 &= dA^{-1},A + A^{-1},dA,A^{-1} cr
dA^{-1} &= -A^{-1},dA,A^{-1} cr
}$$

Next note the gradient of a matrix with respect to itself.
$$
{mathcal H}_{ijkl} = frac{partial A_{ij}}{partial A_{kl}} = delta_{ik}delta_{jl}
$$

Note that ${mathcal H}$ is a 4th order tensor with some interesting symmetry properties (isotropic). It is also the identity element for the Frobenius product, i.e. for any matrix $B$
$${mathcal H}:B=B:{mathcal H}=B$$
Now we can answer your first question. The function of interest is scalar-valued. Let's find its differential and gradient
$$eqalign{
phi &= a^TA^{-1}b cr &= ab^T:A^{-1} cr
dphi &= ab^T:dA^{-1} cr &= -ab^T:A^{-1},dA,A^{-1} cr
&= -A^{-T}ab^TA^{-T}:dA cr
frac{partialphi}{partial A} &= -A^{-T}ab^TA^{-T} cr
}$$

Now let's try the second question. This time the function of interest is matrix-valued.
$$eqalign{
F &= A^{-1}ab^TA^{-1} cr
dF &= dA^{-1}ab^TA^{-1} + A^{-1}ab^TdA^{-1} cr
&= -A^{-1},dA,A^{-1}ab^TA^{-1} - A^{-1}ab^TA^{-1},dA,A^{-1} cr
&= -A^{-1},dA,F - F,dA,A^{-1} cr
&= -Big(A^{-1}{mathcal H}F^T + F{mathcal H}A^{-T}Big):dA cr
frac{partial F}{partial A} &= -Big(A^{-1}{mathcal H}F^T+F{mathcal H}A^{-T}Big) cr
}$$

This gradient is a 4th order tensor.



If you prefer, you can vectorize the matrices to flatten the result.
$$eqalign{
{rm vec}(dF) &= -{rm vec}(-A^{-1},dA,F + F,dA,A^{-1}) cr
&= -(F^Totimes A^{-1} + A^{-T}otimes F),{rm vec}(dA) cr
df &= -(F^Totimes A^{-1} + A^{-T}otimes F),da cr
frac{partial f}{partial a} &= -Big(F^Totimes A^{-1} + A^{-T}otimes FBig) crcr
}$$

In some step above, a colon was used to denote the Frobenius (double-contraction) product
$$eqalign{
A &= {mathcal H}:B &implies &A_{ij} &= sum_{kl}{mathcal H}_{ijkl} B_{kl} cr alpha &= H:B &implies &alpha &= sum_{ij}H_{ij} B_{ij} = {rm Tr}(H^TB) cr
}$$






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    it might be obvious to you and others, but can you explain how to reach from this step $-A^{-1},dA,F - F,dA,A^{-1}$ to this step $-Big(A^{-1}{mathcal H}F^T + F{mathcal H}A^{-T}Big):dA$?
    $endgroup$
    – user550103
    Dec 4 '18 at 6:04






  • 1




    $begingroup$
    It's not obvious, it's just one of the properties of ${mathcal H}$. Work out a simple example like $(A{mathcal H}B:X)$ in index notation and, utilizing the properties of those Kronecker deltas, you'll find that it equals $(AXB^T)$
    $endgroup$
    – greg
    Dec 4 '18 at 13:14








  • 1




    $begingroup$
    It's also closely related to the equally non-obvious formula $${rm vec}(AXB^T) = (Botimes A),{rm vec}(X)$$ which uses a Kronecker product instead of Kronecker deltas.
    $endgroup$
    – greg
    Dec 4 '18 at 13:22










  • $begingroup$
    Thank you for the explanation, greg!
    $endgroup$
    – user550103
    Dec 5 '18 at 9:58











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023692%2fderivative-of-inverse-matrix-by-itself%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

Start with the defining equation for the matrix inverse and find its differential.
$$eqalign{
I &= A^{-1}A cr
0 &= dA^{-1},A + A^{-1},dA cr
0 &= dA^{-1},A + A^{-1},dA,A^{-1} cr
dA^{-1} &= -A^{-1},dA,A^{-1} cr
}$$

Next note the gradient of a matrix with respect to itself.
$$
{mathcal H}_{ijkl} = frac{partial A_{ij}}{partial A_{kl}} = delta_{ik}delta_{jl}
$$

Note that ${mathcal H}$ is a 4th order tensor with some interesting symmetry properties (isotropic). It is also the identity element for the Frobenius product, i.e. for any matrix $B$
$${mathcal H}:B=B:{mathcal H}=B$$
Now we can answer your first question. The function of interest is scalar-valued. Let's find its differential and gradient
$$eqalign{
phi &= a^TA^{-1}b cr &= ab^T:A^{-1} cr
dphi &= ab^T:dA^{-1} cr &= -ab^T:A^{-1},dA,A^{-1} cr
&= -A^{-T}ab^TA^{-T}:dA cr
frac{partialphi}{partial A} &= -A^{-T}ab^TA^{-T} cr
}$$

Now let's try the second question. This time the function of interest is matrix-valued.
$$eqalign{
F &= A^{-1}ab^TA^{-1} cr
dF &= dA^{-1}ab^TA^{-1} + A^{-1}ab^TdA^{-1} cr
&= -A^{-1},dA,A^{-1}ab^TA^{-1} - A^{-1}ab^TA^{-1},dA,A^{-1} cr
&= -A^{-1},dA,F - F,dA,A^{-1} cr
&= -Big(A^{-1}{mathcal H}F^T + F{mathcal H}A^{-T}Big):dA cr
frac{partial F}{partial A} &= -Big(A^{-1}{mathcal H}F^T+F{mathcal H}A^{-T}Big) cr
}$$

This gradient is a 4th order tensor.



If you prefer, you can vectorize the matrices to flatten the result.
$$eqalign{
{rm vec}(dF) &= -{rm vec}(-A^{-1},dA,F + F,dA,A^{-1}) cr
&= -(F^Totimes A^{-1} + A^{-T}otimes F),{rm vec}(dA) cr
df &= -(F^Totimes A^{-1} + A^{-T}otimes F),da cr
frac{partial f}{partial a} &= -Big(F^Totimes A^{-1} + A^{-T}otimes FBig) crcr
}$$

In some step above, a colon was used to denote the Frobenius (double-contraction) product
$$eqalign{
A &= {mathcal H}:B &implies &A_{ij} &= sum_{kl}{mathcal H}_{ijkl} B_{kl} cr alpha &= H:B &implies &alpha &= sum_{ij}H_{ij} B_{ij} = {rm Tr}(H^TB) cr
}$$






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    it might be obvious to you and others, but can you explain how to reach from this step $-A^{-1},dA,F - F,dA,A^{-1}$ to this step $-Big(A^{-1}{mathcal H}F^T + F{mathcal H}A^{-T}Big):dA$?
    $endgroup$
    – user550103
    Dec 4 '18 at 6:04






  • 1




    $begingroup$
    It's not obvious, it's just one of the properties of ${mathcal H}$. Work out a simple example like $(A{mathcal H}B:X)$ in index notation and, utilizing the properties of those Kronecker deltas, you'll find that it equals $(AXB^T)$
    $endgroup$
    – greg
    Dec 4 '18 at 13:14








  • 1




    $begingroup$
    It's also closely related to the equally non-obvious formula $${rm vec}(AXB^T) = (Botimes A),{rm vec}(X)$$ which uses a Kronecker product instead of Kronecker deltas.
    $endgroup$
    – greg
    Dec 4 '18 at 13:22










  • $begingroup$
    Thank you for the explanation, greg!
    $endgroup$
    – user550103
    Dec 5 '18 at 9:58
















4












$begingroup$

Start with the defining equation for the matrix inverse and find its differential.
$$eqalign{
I &= A^{-1}A cr
0 &= dA^{-1},A + A^{-1},dA cr
0 &= dA^{-1},A + A^{-1},dA,A^{-1} cr
dA^{-1} &= -A^{-1},dA,A^{-1} cr
}$$

Next note the gradient of a matrix with respect to itself.
$$
{mathcal H}_{ijkl} = frac{partial A_{ij}}{partial A_{kl}} = delta_{ik}delta_{jl}
$$

Note that ${mathcal H}$ is a 4th order tensor with some interesting symmetry properties (isotropic). It is also the identity element for the Frobenius product, i.e. for any matrix $B$
$${mathcal H}:B=B:{mathcal H}=B$$
Now we can answer your first question. The function of interest is scalar-valued. Let's find its differential and gradient
$$eqalign{
phi &= a^TA^{-1}b cr &= ab^T:A^{-1} cr
dphi &= ab^T:dA^{-1} cr &= -ab^T:A^{-1},dA,A^{-1} cr
&= -A^{-T}ab^TA^{-T}:dA cr
frac{partialphi}{partial A} &= -A^{-T}ab^TA^{-T} cr
}$$

Now let's try the second question. This time the function of interest is matrix-valued.
$$eqalign{
F &= A^{-1}ab^TA^{-1} cr
dF &= dA^{-1}ab^TA^{-1} + A^{-1}ab^TdA^{-1} cr
&= -A^{-1},dA,A^{-1}ab^TA^{-1} - A^{-1}ab^TA^{-1},dA,A^{-1} cr
&= -A^{-1},dA,F - F,dA,A^{-1} cr
&= -Big(A^{-1}{mathcal H}F^T + F{mathcal H}A^{-T}Big):dA cr
frac{partial F}{partial A} &= -Big(A^{-1}{mathcal H}F^T+F{mathcal H}A^{-T}Big) cr
}$$

This gradient is a 4th order tensor.



If you prefer, you can vectorize the matrices to flatten the result.
$$eqalign{
{rm vec}(dF) &= -{rm vec}(-A^{-1},dA,F + F,dA,A^{-1}) cr
&= -(F^Totimes A^{-1} + A^{-T}otimes F),{rm vec}(dA) cr
df &= -(F^Totimes A^{-1} + A^{-T}otimes F),da cr
frac{partial f}{partial a} &= -Big(F^Totimes A^{-1} + A^{-T}otimes FBig) crcr
}$$

In some step above, a colon was used to denote the Frobenius (double-contraction) product
$$eqalign{
A &= {mathcal H}:B &implies &A_{ij} &= sum_{kl}{mathcal H}_{ijkl} B_{kl} cr alpha &= H:B &implies &alpha &= sum_{ij}H_{ij} B_{ij} = {rm Tr}(H^TB) cr
}$$






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    it might be obvious to you and others, but can you explain how to reach from this step $-A^{-1},dA,F - F,dA,A^{-1}$ to this step $-Big(A^{-1}{mathcal H}F^T + F{mathcal H}A^{-T}Big):dA$?
    $endgroup$
    – user550103
    Dec 4 '18 at 6:04






  • 1




    $begingroup$
    It's not obvious, it's just one of the properties of ${mathcal H}$. Work out a simple example like $(A{mathcal H}B:X)$ in index notation and, utilizing the properties of those Kronecker deltas, you'll find that it equals $(AXB^T)$
    $endgroup$
    – greg
    Dec 4 '18 at 13:14








  • 1




    $begingroup$
    It's also closely related to the equally non-obvious formula $${rm vec}(AXB^T) = (Botimes A),{rm vec}(X)$$ which uses a Kronecker product instead of Kronecker deltas.
    $endgroup$
    – greg
    Dec 4 '18 at 13:22










  • $begingroup$
    Thank you for the explanation, greg!
    $endgroup$
    – user550103
    Dec 5 '18 at 9:58














4












4








4





$begingroup$

Start with the defining equation for the matrix inverse and find its differential.
$$eqalign{
I &= A^{-1}A cr
0 &= dA^{-1},A + A^{-1},dA cr
0 &= dA^{-1},A + A^{-1},dA,A^{-1} cr
dA^{-1} &= -A^{-1},dA,A^{-1} cr
}$$

Next note the gradient of a matrix with respect to itself.
$$
{mathcal H}_{ijkl} = frac{partial A_{ij}}{partial A_{kl}} = delta_{ik}delta_{jl}
$$

Note that ${mathcal H}$ is a 4th order tensor with some interesting symmetry properties (isotropic). It is also the identity element for the Frobenius product, i.e. for any matrix $B$
$${mathcal H}:B=B:{mathcal H}=B$$
Now we can answer your first question. The function of interest is scalar-valued. Let's find its differential and gradient
$$eqalign{
phi &= a^TA^{-1}b cr &= ab^T:A^{-1} cr
dphi &= ab^T:dA^{-1} cr &= -ab^T:A^{-1},dA,A^{-1} cr
&= -A^{-T}ab^TA^{-T}:dA cr
frac{partialphi}{partial A} &= -A^{-T}ab^TA^{-T} cr
}$$

Now let's try the second question. This time the function of interest is matrix-valued.
$$eqalign{
F &= A^{-1}ab^TA^{-1} cr
dF &= dA^{-1}ab^TA^{-1} + A^{-1}ab^TdA^{-1} cr
&= -A^{-1},dA,A^{-1}ab^TA^{-1} - A^{-1}ab^TA^{-1},dA,A^{-1} cr
&= -A^{-1},dA,F - F,dA,A^{-1} cr
&= -Big(A^{-1}{mathcal H}F^T + F{mathcal H}A^{-T}Big):dA cr
frac{partial F}{partial A} &= -Big(A^{-1}{mathcal H}F^T+F{mathcal H}A^{-T}Big) cr
}$$

This gradient is a 4th order tensor.



If you prefer, you can vectorize the matrices to flatten the result.
$$eqalign{
{rm vec}(dF) &= -{rm vec}(-A^{-1},dA,F + F,dA,A^{-1}) cr
&= -(F^Totimes A^{-1} + A^{-T}otimes F),{rm vec}(dA) cr
df &= -(F^Totimes A^{-1} + A^{-T}otimes F),da cr
frac{partial f}{partial a} &= -Big(F^Totimes A^{-1} + A^{-T}otimes FBig) crcr
}$$

In some step above, a colon was used to denote the Frobenius (double-contraction) product
$$eqalign{
A &= {mathcal H}:B &implies &A_{ij} &= sum_{kl}{mathcal H}_{ijkl} B_{kl} cr alpha &= H:B &implies &alpha &= sum_{ij}H_{ij} B_{ij} = {rm Tr}(H^TB) cr
}$$






share|cite|improve this answer











$endgroup$



Start with the defining equation for the matrix inverse and find its differential.
$$eqalign{
I &= A^{-1}A cr
0 &= dA^{-1},A + A^{-1},dA cr
0 &= dA^{-1},A + A^{-1},dA,A^{-1} cr
dA^{-1} &= -A^{-1},dA,A^{-1} cr
}$$

Next note the gradient of a matrix with respect to itself.
$$
{mathcal H}_{ijkl} = frac{partial A_{ij}}{partial A_{kl}} = delta_{ik}delta_{jl}
$$

Note that ${mathcal H}$ is a 4th order tensor with some interesting symmetry properties (isotropic). It is also the identity element for the Frobenius product, i.e. for any matrix $B$
$${mathcal H}:B=B:{mathcal H}=B$$
Now we can answer your first question. The function of interest is scalar-valued. Let's find its differential and gradient
$$eqalign{
phi &= a^TA^{-1}b cr &= ab^T:A^{-1} cr
dphi &= ab^T:dA^{-1} cr &= -ab^T:A^{-1},dA,A^{-1} cr
&= -A^{-T}ab^TA^{-T}:dA cr
frac{partialphi}{partial A} &= -A^{-T}ab^TA^{-T} cr
}$$

Now let's try the second question. This time the function of interest is matrix-valued.
$$eqalign{
F &= A^{-1}ab^TA^{-1} cr
dF &= dA^{-1}ab^TA^{-1} + A^{-1}ab^TdA^{-1} cr
&= -A^{-1},dA,A^{-1}ab^TA^{-1} - A^{-1}ab^TA^{-1},dA,A^{-1} cr
&= -A^{-1},dA,F - F,dA,A^{-1} cr
&= -Big(A^{-1}{mathcal H}F^T + F{mathcal H}A^{-T}Big):dA cr
frac{partial F}{partial A} &= -Big(A^{-1}{mathcal H}F^T+F{mathcal H}A^{-T}Big) cr
}$$

This gradient is a 4th order tensor.



If you prefer, you can vectorize the matrices to flatten the result.
$$eqalign{
{rm vec}(dF) &= -{rm vec}(-A^{-1},dA,F + F,dA,A^{-1}) cr
&= -(F^Totimes A^{-1} + A^{-T}otimes F),{rm vec}(dA) cr
df &= -(F^Totimes A^{-1} + A^{-T}otimes F),da cr
frac{partial f}{partial a} &= -Big(F^Totimes A^{-1} + A^{-T}otimes FBig) crcr
}$$

In some step above, a colon was used to denote the Frobenius (double-contraction) product
$$eqalign{
A &= {mathcal H}:B &implies &A_{ij} &= sum_{kl}{mathcal H}_{ijkl} B_{kl} cr alpha &= H:B &implies &alpha &= sum_{ij}H_{ij} B_{ij} = {rm Tr}(H^TB) cr
}$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 3 '18 at 16:07

























answered Dec 3 '18 at 15:35









greggreg

7,9101821




7,9101821








  • 1




    $begingroup$
    it might be obvious to you and others, but can you explain how to reach from this step $-A^{-1},dA,F - F,dA,A^{-1}$ to this step $-Big(A^{-1}{mathcal H}F^T + F{mathcal H}A^{-T}Big):dA$?
    $endgroup$
    – user550103
    Dec 4 '18 at 6:04






  • 1




    $begingroup$
    It's not obvious, it's just one of the properties of ${mathcal H}$. Work out a simple example like $(A{mathcal H}B:X)$ in index notation and, utilizing the properties of those Kronecker deltas, you'll find that it equals $(AXB^T)$
    $endgroup$
    – greg
    Dec 4 '18 at 13:14








  • 1




    $begingroup$
    It's also closely related to the equally non-obvious formula $${rm vec}(AXB^T) = (Botimes A),{rm vec}(X)$$ which uses a Kronecker product instead of Kronecker deltas.
    $endgroup$
    – greg
    Dec 4 '18 at 13:22










  • $begingroup$
    Thank you for the explanation, greg!
    $endgroup$
    – user550103
    Dec 5 '18 at 9:58














  • 1




    $begingroup$
    it might be obvious to you and others, but can you explain how to reach from this step $-A^{-1},dA,F - F,dA,A^{-1}$ to this step $-Big(A^{-1}{mathcal H}F^T + F{mathcal H}A^{-T}Big):dA$?
    $endgroup$
    – user550103
    Dec 4 '18 at 6:04






  • 1




    $begingroup$
    It's not obvious, it's just one of the properties of ${mathcal H}$. Work out a simple example like $(A{mathcal H}B:X)$ in index notation and, utilizing the properties of those Kronecker deltas, you'll find that it equals $(AXB^T)$
    $endgroup$
    – greg
    Dec 4 '18 at 13:14








  • 1




    $begingroup$
    It's also closely related to the equally non-obvious formula $${rm vec}(AXB^T) = (Botimes A),{rm vec}(X)$$ which uses a Kronecker product instead of Kronecker deltas.
    $endgroup$
    – greg
    Dec 4 '18 at 13:22










  • $begingroup$
    Thank you for the explanation, greg!
    $endgroup$
    – user550103
    Dec 5 '18 at 9:58








1




1




$begingroup$
it might be obvious to you and others, but can you explain how to reach from this step $-A^{-1},dA,F - F,dA,A^{-1}$ to this step $-Big(A^{-1}{mathcal H}F^T + F{mathcal H}A^{-T}Big):dA$?
$endgroup$
– user550103
Dec 4 '18 at 6:04




$begingroup$
it might be obvious to you and others, but can you explain how to reach from this step $-A^{-1},dA,F - F,dA,A^{-1}$ to this step $-Big(A^{-1}{mathcal H}F^T + F{mathcal H}A^{-T}Big):dA$?
$endgroup$
– user550103
Dec 4 '18 at 6:04




1




1




$begingroup$
It's not obvious, it's just one of the properties of ${mathcal H}$. Work out a simple example like $(A{mathcal H}B:X)$ in index notation and, utilizing the properties of those Kronecker deltas, you'll find that it equals $(AXB^T)$
$endgroup$
– greg
Dec 4 '18 at 13:14






$begingroup$
It's not obvious, it's just one of the properties of ${mathcal H}$. Work out a simple example like $(A{mathcal H}B:X)$ in index notation and, utilizing the properties of those Kronecker deltas, you'll find that it equals $(AXB^T)$
$endgroup$
– greg
Dec 4 '18 at 13:14






1




1




$begingroup$
It's also closely related to the equally non-obvious formula $${rm vec}(AXB^T) = (Botimes A),{rm vec}(X)$$ which uses a Kronecker product instead of Kronecker deltas.
$endgroup$
– greg
Dec 4 '18 at 13:22




$begingroup$
It's also closely related to the equally non-obvious formula $${rm vec}(AXB^T) = (Botimes A),{rm vec}(X)$$ which uses a Kronecker product instead of Kronecker deltas.
$endgroup$
– greg
Dec 4 '18 at 13:22












$begingroup$
Thank you for the explanation, greg!
$endgroup$
– user550103
Dec 5 '18 at 9:58




$begingroup$
Thank you for the explanation, greg!
$endgroup$
– user550103
Dec 5 '18 at 9:58


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023692%2fderivative-of-inverse-matrix-by-itself%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Musa