Expected value and variance of a transformed random variable
$begingroup$
X is a binomial random variable with $n = 10000$ and $p = 60%$ (hence $E(X) = 10000 * 60 = 6000$). Now Y is a transformed random variable with $Y = 100000 - 7X$.
I have to calculate the expected value $E(Y)$ and variance $V(Y)$ of Y.
For $E(Y)$ I thought of this: $E(Y) = E(100000 - 7X) = E(-7X) + 100000 = 100000 - E(7X) = 100000 - 7E(X) = 100000 - 7 * 6000 = 58000$
But how do I calculate $V(Y)$?
statistics random-variables variance expected-value
$endgroup$
add a comment |
$begingroup$
X is a binomial random variable with $n = 10000$ and $p = 60%$ (hence $E(X) = 10000 * 60 = 6000$). Now Y is a transformed random variable with $Y = 100000 - 7X$.
I have to calculate the expected value $E(Y)$ and variance $V(Y)$ of Y.
For $E(Y)$ I thought of this: $E(Y) = E(100000 - 7X) = E(-7X) + 100000 = 100000 - E(7X) = 100000 - 7E(X) = 100000 - 7 * 6000 = 58000$
But how do I calculate $V(Y)$?
statistics random-variables variance expected-value
$endgroup$
add a comment |
$begingroup$
X is a binomial random variable with $n = 10000$ and $p = 60%$ (hence $E(X) = 10000 * 60 = 6000$). Now Y is a transformed random variable with $Y = 100000 - 7X$.
I have to calculate the expected value $E(Y)$ and variance $V(Y)$ of Y.
For $E(Y)$ I thought of this: $E(Y) = E(100000 - 7X) = E(-7X) + 100000 = 100000 - E(7X) = 100000 - 7E(X) = 100000 - 7 * 6000 = 58000$
But how do I calculate $V(Y)$?
statistics random-variables variance expected-value
$endgroup$
X is a binomial random variable with $n = 10000$ and $p = 60%$ (hence $E(X) = 10000 * 60 = 6000$). Now Y is a transformed random variable with $Y = 100000 - 7X$.
I have to calculate the expected value $E(Y)$ and variance $V(Y)$ of Y.
For $E(Y)$ I thought of this: $E(Y) = E(100000 - 7X) = E(-7X) + 100000 = 100000 - E(7X) = 100000 - 7E(X) = 100000 - 7 * 6000 = 58000$
But how do I calculate $V(Y)$?
statistics random-variables variance expected-value
statistics random-variables variance expected-value
asked Dec 3 '18 at 8:38
JoeyJoey
436
436
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$$V(Y)=V(100000-7X)=7^2cdot V(X)$$
I believe you can finish the exercise from here.
$endgroup$
add a comment |
$begingroup$
In general if $a,b$ are constants then: $$mathsf{Var}(aX+b)=a^2mathsf{Var}(X)$$
Verification: $$mathbb Eleft(aX+b-mathbb E(aX+b)right)^2=mathbb Eleft(aX+b-amathbb EX-b)right)^2=mathbb Ea^2(X-mathbb EX)^2=a^2mathbb E(X-mathbb EX)^2$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023789%2fexpected-value-and-variance-of-a-transformed-random-variable%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$V(Y)=V(100000-7X)=7^2cdot V(X)$$
I believe you can finish the exercise from here.
$endgroup$
add a comment |
$begingroup$
$$V(Y)=V(100000-7X)=7^2cdot V(X)$$
I believe you can finish the exercise from here.
$endgroup$
add a comment |
$begingroup$
$$V(Y)=V(100000-7X)=7^2cdot V(X)$$
I believe you can finish the exercise from here.
$endgroup$
$$V(Y)=V(100000-7X)=7^2cdot V(X)$$
I believe you can finish the exercise from here.
answered Dec 3 '18 at 8:41
Siong Thye GohSiong Thye Goh
100k1466117
100k1466117
add a comment |
add a comment |
$begingroup$
In general if $a,b$ are constants then: $$mathsf{Var}(aX+b)=a^2mathsf{Var}(X)$$
Verification: $$mathbb Eleft(aX+b-mathbb E(aX+b)right)^2=mathbb Eleft(aX+b-amathbb EX-b)right)^2=mathbb Ea^2(X-mathbb EX)^2=a^2mathbb E(X-mathbb EX)^2$$
$endgroup$
add a comment |
$begingroup$
In general if $a,b$ are constants then: $$mathsf{Var}(aX+b)=a^2mathsf{Var}(X)$$
Verification: $$mathbb Eleft(aX+b-mathbb E(aX+b)right)^2=mathbb Eleft(aX+b-amathbb EX-b)right)^2=mathbb Ea^2(X-mathbb EX)^2=a^2mathbb E(X-mathbb EX)^2$$
$endgroup$
add a comment |
$begingroup$
In general if $a,b$ are constants then: $$mathsf{Var}(aX+b)=a^2mathsf{Var}(X)$$
Verification: $$mathbb Eleft(aX+b-mathbb E(aX+b)right)^2=mathbb Eleft(aX+b-amathbb EX-b)right)^2=mathbb Ea^2(X-mathbb EX)^2=a^2mathbb E(X-mathbb EX)^2$$
$endgroup$
In general if $a,b$ are constants then: $$mathsf{Var}(aX+b)=a^2mathsf{Var}(X)$$
Verification: $$mathbb Eleft(aX+b-mathbb E(aX+b)right)^2=mathbb Eleft(aX+b-amathbb EX-b)right)^2=mathbb Ea^2(X-mathbb EX)^2=a^2mathbb E(X-mathbb EX)^2$$
answered Dec 3 '18 at 9:00
drhabdrhab
100k544130
100k544130
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023789%2fexpected-value-and-variance-of-a-transformed-random-variable%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown