Formula for the application of a linear differential operator to the product of exponential and polynomial...
$begingroup$
In the context of linear differential equations, I've stumbled upon the following identity for an arbitrary pair of polynomials $P$ and $Q$ with real or complex coefficients:
$$
Pleft(frac{d}{dx}right)bigl(e^{xy}Q(x)bigr)
=sum_{n=0}^inftyfrac{P^{(n)}(y)e^{xy}Q^{(n)}(x)}{n!}
= Qleft(frac{d}{dy}right)bigl(e^{xy}P(y)bigr).
$$
This can be more or less easily checked by using Taylor expansions of $Pbigl(frac{d}{dx}bigr)$ at $y$ and of $Qbigl(frac{d}{dy}bigr)$ at $x$:
$$
Pleft(frac{d}{dx}right)
=sum_{n=0}^inftyfrac{P^{(n)}(y)}{n!}left(frac{d}{dx} - yright)^n,
quad
Qleft(frac{d}{dy}right)
=sum_{n=0}^inftyfrac{Q^{(n)}(x)}{n!}left(frac{d}{dy} - xright)^n.
$$
Is there any easy way to "see" that
$Pbigl(frac{d}{dx}bigr)bigl(e^{xy}Q(x)) = Qbigl(frac{d}{dy}bigr)bigl(e^{xy}P(y)bigr)$
without "getting hands dirty"?
Is this identity a part of some general theory?
It makes me think of Fourier analysis, but I do not know much about it.
ordinary-differential-equations polynomials exponential-function differential-operators
$endgroup$
add a comment |
$begingroup$
In the context of linear differential equations, I've stumbled upon the following identity for an arbitrary pair of polynomials $P$ and $Q$ with real or complex coefficients:
$$
Pleft(frac{d}{dx}right)bigl(e^{xy}Q(x)bigr)
=sum_{n=0}^inftyfrac{P^{(n)}(y)e^{xy}Q^{(n)}(x)}{n!}
= Qleft(frac{d}{dy}right)bigl(e^{xy}P(y)bigr).
$$
This can be more or less easily checked by using Taylor expansions of $Pbigl(frac{d}{dx}bigr)$ at $y$ and of $Qbigl(frac{d}{dy}bigr)$ at $x$:
$$
Pleft(frac{d}{dx}right)
=sum_{n=0}^inftyfrac{P^{(n)}(y)}{n!}left(frac{d}{dx} - yright)^n,
quad
Qleft(frac{d}{dy}right)
=sum_{n=0}^inftyfrac{Q^{(n)}(x)}{n!}left(frac{d}{dy} - xright)^n.
$$
Is there any easy way to "see" that
$Pbigl(frac{d}{dx}bigr)bigl(e^{xy}Q(x)) = Qbigl(frac{d}{dy}bigr)bigl(e^{xy}P(y)bigr)$
without "getting hands dirty"?
Is this identity a part of some general theory?
It makes me think of Fourier analysis, but I do not know much about it.
ordinary-differential-equations polynomials exponential-function differential-operators
$endgroup$
add a comment |
$begingroup$
In the context of linear differential equations, I've stumbled upon the following identity for an arbitrary pair of polynomials $P$ and $Q$ with real or complex coefficients:
$$
Pleft(frac{d}{dx}right)bigl(e^{xy}Q(x)bigr)
=sum_{n=0}^inftyfrac{P^{(n)}(y)e^{xy}Q^{(n)}(x)}{n!}
= Qleft(frac{d}{dy}right)bigl(e^{xy}P(y)bigr).
$$
This can be more or less easily checked by using Taylor expansions of $Pbigl(frac{d}{dx}bigr)$ at $y$ and of $Qbigl(frac{d}{dy}bigr)$ at $x$:
$$
Pleft(frac{d}{dx}right)
=sum_{n=0}^inftyfrac{P^{(n)}(y)}{n!}left(frac{d}{dx} - yright)^n,
quad
Qleft(frac{d}{dy}right)
=sum_{n=0}^inftyfrac{Q^{(n)}(x)}{n!}left(frac{d}{dy} - xright)^n.
$$
Is there any easy way to "see" that
$Pbigl(frac{d}{dx}bigr)bigl(e^{xy}Q(x)) = Qbigl(frac{d}{dy}bigr)bigl(e^{xy}P(y)bigr)$
without "getting hands dirty"?
Is this identity a part of some general theory?
It makes me think of Fourier analysis, but I do not know much about it.
ordinary-differential-equations polynomials exponential-function differential-operators
$endgroup$
In the context of linear differential equations, I've stumbled upon the following identity for an arbitrary pair of polynomials $P$ and $Q$ with real or complex coefficients:
$$
Pleft(frac{d}{dx}right)bigl(e^{xy}Q(x)bigr)
=sum_{n=0}^inftyfrac{P^{(n)}(y)e^{xy}Q^{(n)}(x)}{n!}
= Qleft(frac{d}{dy}right)bigl(e^{xy}P(y)bigr).
$$
This can be more or less easily checked by using Taylor expansions of $Pbigl(frac{d}{dx}bigr)$ at $y$ and of $Qbigl(frac{d}{dy}bigr)$ at $x$:
$$
Pleft(frac{d}{dx}right)
=sum_{n=0}^inftyfrac{P^{(n)}(y)}{n!}left(frac{d}{dx} - yright)^n,
quad
Qleft(frac{d}{dy}right)
=sum_{n=0}^inftyfrac{Q^{(n)}(x)}{n!}left(frac{d}{dy} - xright)^n.
$$
Is there any easy way to "see" that
$Pbigl(frac{d}{dx}bigr)bigl(e^{xy}Q(x)) = Qbigl(frac{d}{dy}bigr)bigl(e^{xy}P(y)bigr)$
without "getting hands dirty"?
Is this identity a part of some general theory?
It makes me think of Fourier analysis, but I do not know much about it.
ordinary-differential-equations polynomials exponential-function differential-operators
ordinary-differential-equations polynomials exponential-function differential-operators
edited Dec 3 '18 at 12:56
Alexey
asked Dec 3 '18 at 7:53
AlexeyAlexey
756623
756623
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023756%2fformula-for-the-application-of-a-linear-differential-operator-to-the-product-of%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023756%2fformula-for-the-application-of-a-linear-differential-operator-to-the-product-of%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown