A construction of a Stratonovich type integral for fractional Brownian motion












1












$begingroup$


I'm studying this article https://projecteuclid.org/download/pdf_1/euclid.twjm/1500574954 and I'm having problems understanding the proof of lemma 3.



Let me recall some of the criminals involved. Let $(u_t)_{t in [0,T]}$ be a simple bounded process of the form



$$
u = sum_{j = 0}^{n-1} F_j 1_{(t_s, t_{j+1}]},
$$

let us define
$$
u^epsilon_t = frac{1}{2 epsilon}int_{t - epsilon}^{t+epsilon} u_r dr.
$$

Let us define the seminorm
$$
lvert| phi |rvert_K^2 = int_0^T phi(s)^2 K(T,s)^2 ds + int_0^T left(int_s^T left | phi(t) - phi(s) right | (t-s)^{H - frac{3}{2}} dt right)^2 ds
$$

where $K$ satisfies
$$ left | K(t,s) right | leq c((t-s)^{H - frac{1}{2}} + s^{H - frac{1}{2}}) $$ and
$$left | frac{partial K}{partial t} (t,s) right | leq c (t-s)^{H - frac{3}{2}}$$
where $H < frac{1}{2}$. Let $mathcal{H}_K$ be the completion of the set of step functions with respect to the norm defined above. Then at page 614 it is stated that $u_t^epsilon$ converges to $u$ in $mathbb{D}^{1,2}(mathcal{H}_K)$. The key step that I'm missing is the integral estimate done at page 615, in fact I obtain and estimate that also involves the integral:
$$
int_{t_i + 2 epsilon}^{t_{i+1} - 2 epsilon} left( int_{s}^{t_i + 2 epsilon} left| u_t^epsilon - u_s^epsilon right | (t-s)^{H - frac{3}{2}} dt right)^2 ds
$$

and I am not able to state that this integral converges to zero. Any suggestions?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Regarding the last integral, don't we have $|u_t^epsilon-u_s^epsilon|=0$ for $s,tin(t_i+2epsilon,t_{i+1}-2epsilon)$?
    $endgroup$
    – AddSup
    Dec 9 '18 at 12:11












  • $begingroup$
    Yes, that is true. Anyway in the integral $int_s^{t_i + 2 epsilon} dots$, $s$ belongs to $[0, t_i + 2 epsilon]$ and that shall not be null.
    $endgroup$
    – JCF
    Dec 9 '18 at 15:29












  • $begingroup$
    I meant $t$ not $s$.
    $endgroup$
    – JCF
    Dec 9 '18 at 15:40










  • $begingroup$
    ? In the inner integral, $t$ lies between $s$ and $t_i+2epsilon$ while $s$ lies between $t_i+2epsilon$ and $t_{i+1}-2epsilon$, so $t$, too, lies between $t_i+2epsilon$ and $t_{i+1}-2epsilon$. Where does $0$ in $[0,t_i+2epsilon]$ come from?
    $endgroup$
    – AddSup
    Dec 9 '18 at 16:54










  • $begingroup$
    You're right, stupidly I didn't notice it.
    $endgroup$
    – JCF
    Dec 9 '18 at 17:48
















1












$begingroup$


I'm studying this article https://projecteuclid.org/download/pdf_1/euclid.twjm/1500574954 and I'm having problems understanding the proof of lemma 3.



Let me recall some of the criminals involved. Let $(u_t)_{t in [0,T]}$ be a simple bounded process of the form



$$
u = sum_{j = 0}^{n-1} F_j 1_{(t_s, t_{j+1}]},
$$

let us define
$$
u^epsilon_t = frac{1}{2 epsilon}int_{t - epsilon}^{t+epsilon} u_r dr.
$$

Let us define the seminorm
$$
lvert| phi |rvert_K^2 = int_0^T phi(s)^2 K(T,s)^2 ds + int_0^T left(int_s^T left | phi(t) - phi(s) right | (t-s)^{H - frac{3}{2}} dt right)^2 ds
$$

where $K$ satisfies
$$ left | K(t,s) right | leq c((t-s)^{H - frac{1}{2}} + s^{H - frac{1}{2}}) $$ and
$$left | frac{partial K}{partial t} (t,s) right | leq c (t-s)^{H - frac{3}{2}}$$
where $H < frac{1}{2}$. Let $mathcal{H}_K$ be the completion of the set of step functions with respect to the norm defined above. Then at page 614 it is stated that $u_t^epsilon$ converges to $u$ in $mathbb{D}^{1,2}(mathcal{H}_K)$. The key step that I'm missing is the integral estimate done at page 615, in fact I obtain and estimate that also involves the integral:
$$
int_{t_i + 2 epsilon}^{t_{i+1} - 2 epsilon} left( int_{s}^{t_i + 2 epsilon} left| u_t^epsilon - u_s^epsilon right | (t-s)^{H - frac{3}{2}} dt right)^2 ds
$$

and I am not able to state that this integral converges to zero. Any suggestions?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Regarding the last integral, don't we have $|u_t^epsilon-u_s^epsilon|=0$ for $s,tin(t_i+2epsilon,t_{i+1}-2epsilon)$?
    $endgroup$
    – AddSup
    Dec 9 '18 at 12:11












  • $begingroup$
    Yes, that is true. Anyway in the integral $int_s^{t_i + 2 epsilon} dots$, $s$ belongs to $[0, t_i + 2 epsilon]$ and that shall not be null.
    $endgroup$
    – JCF
    Dec 9 '18 at 15:29












  • $begingroup$
    I meant $t$ not $s$.
    $endgroup$
    – JCF
    Dec 9 '18 at 15:40










  • $begingroup$
    ? In the inner integral, $t$ lies between $s$ and $t_i+2epsilon$ while $s$ lies between $t_i+2epsilon$ and $t_{i+1}-2epsilon$, so $t$, too, lies between $t_i+2epsilon$ and $t_{i+1}-2epsilon$. Where does $0$ in $[0,t_i+2epsilon]$ come from?
    $endgroup$
    – AddSup
    Dec 9 '18 at 16:54










  • $begingroup$
    You're right, stupidly I didn't notice it.
    $endgroup$
    – JCF
    Dec 9 '18 at 17:48














1












1








1


1



$begingroup$


I'm studying this article https://projecteuclid.org/download/pdf_1/euclid.twjm/1500574954 and I'm having problems understanding the proof of lemma 3.



Let me recall some of the criminals involved. Let $(u_t)_{t in [0,T]}$ be a simple bounded process of the form



$$
u = sum_{j = 0}^{n-1} F_j 1_{(t_s, t_{j+1}]},
$$

let us define
$$
u^epsilon_t = frac{1}{2 epsilon}int_{t - epsilon}^{t+epsilon} u_r dr.
$$

Let us define the seminorm
$$
lvert| phi |rvert_K^2 = int_0^T phi(s)^2 K(T,s)^2 ds + int_0^T left(int_s^T left | phi(t) - phi(s) right | (t-s)^{H - frac{3}{2}} dt right)^2 ds
$$

where $K$ satisfies
$$ left | K(t,s) right | leq c((t-s)^{H - frac{1}{2}} + s^{H - frac{1}{2}}) $$ and
$$left | frac{partial K}{partial t} (t,s) right | leq c (t-s)^{H - frac{3}{2}}$$
where $H < frac{1}{2}$. Let $mathcal{H}_K$ be the completion of the set of step functions with respect to the norm defined above. Then at page 614 it is stated that $u_t^epsilon$ converges to $u$ in $mathbb{D}^{1,2}(mathcal{H}_K)$. The key step that I'm missing is the integral estimate done at page 615, in fact I obtain and estimate that also involves the integral:
$$
int_{t_i + 2 epsilon}^{t_{i+1} - 2 epsilon} left( int_{s}^{t_i + 2 epsilon} left| u_t^epsilon - u_s^epsilon right | (t-s)^{H - frac{3}{2}} dt right)^2 ds
$$

and I am not able to state that this integral converges to zero. Any suggestions?










share|cite|improve this question











$endgroup$




I'm studying this article https://projecteuclid.org/download/pdf_1/euclid.twjm/1500574954 and I'm having problems understanding the proof of lemma 3.



Let me recall some of the criminals involved. Let $(u_t)_{t in [0,T]}$ be a simple bounded process of the form



$$
u = sum_{j = 0}^{n-1} F_j 1_{(t_s, t_{j+1}]},
$$

let us define
$$
u^epsilon_t = frac{1}{2 epsilon}int_{t - epsilon}^{t+epsilon} u_r dr.
$$

Let us define the seminorm
$$
lvert| phi |rvert_K^2 = int_0^T phi(s)^2 K(T,s)^2 ds + int_0^T left(int_s^T left | phi(t) - phi(s) right | (t-s)^{H - frac{3}{2}} dt right)^2 ds
$$

where $K$ satisfies
$$ left | K(t,s) right | leq c((t-s)^{H - frac{1}{2}} + s^{H - frac{1}{2}}) $$ and
$$left | frac{partial K}{partial t} (t,s) right | leq c (t-s)^{H - frac{3}{2}}$$
where $H < frac{1}{2}$. Let $mathcal{H}_K$ be the completion of the set of step functions with respect to the norm defined above. Then at page 614 it is stated that $u_t^epsilon$ converges to $u$ in $mathbb{D}^{1,2}(mathcal{H}_K)$. The key step that I'm missing is the integral estimate done at page 615, in fact I obtain and estimate that also involves the integral:
$$
int_{t_i + 2 epsilon}^{t_{i+1} - 2 epsilon} left( int_{s}^{t_i + 2 epsilon} left| u_t^epsilon - u_s^epsilon right | (t-s)^{H - frac{3}{2}} dt right)^2 ds
$$

and I am not able to state that this integral converges to zero. Any suggestions?







probability-theory measure-theory stochastic-calculus stochastic-analysis malliavin-calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 8 '18 at 17:23







JCF

















asked Dec 8 '18 at 17:09









JCFJCF

349112




349112












  • $begingroup$
    Regarding the last integral, don't we have $|u_t^epsilon-u_s^epsilon|=0$ for $s,tin(t_i+2epsilon,t_{i+1}-2epsilon)$?
    $endgroup$
    – AddSup
    Dec 9 '18 at 12:11












  • $begingroup$
    Yes, that is true. Anyway in the integral $int_s^{t_i + 2 epsilon} dots$, $s$ belongs to $[0, t_i + 2 epsilon]$ and that shall not be null.
    $endgroup$
    – JCF
    Dec 9 '18 at 15:29












  • $begingroup$
    I meant $t$ not $s$.
    $endgroup$
    – JCF
    Dec 9 '18 at 15:40










  • $begingroup$
    ? In the inner integral, $t$ lies between $s$ and $t_i+2epsilon$ while $s$ lies between $t_i+2epsilon$ and $t_{i+1}-2epsilon$, so $t$, too, lies between $t_i+2epsilon$ and $t_{i+1}-2epsilon$. Where does $0$ in $[0,t_i+2epsilon]$ come from?
    $endgroup$
    – AddSup
    Dec 9 '18 at 16:54










  • $begingroup$
    You're right, stupidly I didn't notice it.
    $endgroup$
    – JCF
    Dec 9 '18 at 17:48


















  • $begingroup$
    Regarding the last integral, don't we have $|u_t^epsilon-u_s^epsilon|=0$ for $s,tin(t_i+2epsilon,t_{i+1}-2epsilon)$?
    $endgroup$
    – AddSup
    Dec 9 '18 at 12:11












  • $begingroup$
    Yes, that is true. Anyway in the integral $int_s^{t_i + 2 epsilon} dots$, $s$ belongs to $[0, t_i + 2 epsilon]$ and that shall not be null.
    $endgroup$
    – JCF
    Dec 9 '18 at 15:29












  • $begingroup$
    I meant $t$ not $s$.
    $endgroup$
    – JCF
    Dec 9 '18 at 15:40










  • $begingroup$
    ? In the inner integral, $t$ lies between $s$ and $t_i+2epsilon$ while $s$ lies between $t_i+2epsilon$ and $t_{i+1}-2epsilon$, so $t$, too, lies between $t_i+2epsilon$ and $t_{i+1}-2epsilon$. Where does $0$ in $[0,t_i+2epsilon]$ come from?
    $endgroup$
    – AddSup
    Dec 9 '18 at 16:54










  • $begingroup$
    You're right, stupidly I didn't notice it.
    $endgroup$
    – JCF
    Dec 9 '18 at 17:48
















$begingroup$
Regarding the last integral, don't we have $|u_t^epsilon-u_s^epsilon|=0$ for $s,tin(t_i+2epsilon,t_{i+1}-2epsilon)$?
$endgroup$
– AddSup
Dec 9 '18 at 12:11






$begingroup$
Regarding the last integral, don't we have $|u_t^epsilon-u_s^epsilon|=0$ for $s,tin(t_i+2epsilon,t_{i+1}-2epsilon)$?
$endgroup$
– AddSup
Dec 9 '18 at 12:11














$begingroup$
Yes, that is true. Anyway in the integral $int_s^{t_i + 2 epsilon} dots$, $s$ belongs to $[0, t_i + 2 epsilon]$ and that shall not be null.
$endgroup$
– JCF
Dec 9 '18 at 15:29






$begingroup$
Yes, that is true. Anyway in the integral $int_s^{t_i + 2 epsilon} dots$, $s$ belongs to $[0, t_i + 2 epsilon]$ and that shall not be null.
$endgroup$
– JCF
Dec 9 '18 at 15:29














$begingroup$
I meant $t$ not $s$.
$endgroup$
– JCF
Dec 9 '18 at 15:40




$begingroup$
I meant $t$ not $s$.
$endgroup$
– JCF
Dec 9 '18 at 15:40












$begingroup$
? In the inner integral, $t$ lies between $s$ and $t_i+2epsilon$ while $s$ lies between $t_i+2epsilon$ and $t_{i+1}-2epsilon$, so $t$, too, lies between $t_i+2epsilon$ and $t_{i+1}-2epsilon$. Where does $0$ in $[0,t_i+2epsilon]$ come from?
$endgroup$
– AddSup
Dec 9 '18 at 16:54




$begingroup$
? In the inner integral, $t$ lies between $s$ and $t_i+2epsilon$ while $s$ lies between $t_i+2epsilon$ and $t_{i+1}-2epsilon$, so $t$, too, lies between $t_i+2epsilon$ and $t_{i+1}-2epsilon$. Where does $0$ in $[0,t_i+2epsilon]$ come from?
$endgroup$
– AddSup
Dec 9 '18 at 16:54












$begingroup$
You're right, stupidly I didn't notice it.
$endgroup$
– JCF
Dec 9 '18 at 17:48




$begingroup$
You're right, stupidly I didn't notice it.
$endgroup$
– JCF
Dec 9 '18 at 17:48










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031363%2fa-construction-of-a-stratonovich-type-integral-for-fractional-brownian-motion%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031363%2fa-construction-of-a-stratonovich-type-integral-for-fractional-brownian-motion%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Musa