A construction of a Stratonovich type integral for fractional Brownian motion
$begingroup$
I'm studying this article https://projecteuclid.org/download/pdf_1/euclid.twjm/1500574954 and I'm having problems understanding the proof of lemma 3.
Let me recall some of the criminals involved. Let $(u_t)_{t in [0,T]}$ be a simple bounded process of the form
$$
u = sum_{j = 0}^{n-1} F_j 1_{(t_s, t_{j+1}]},
$$
let us define
$$
u^epsilon_t = frac{1}{2 epsilon}int_{t - epsilon}^{t+epsilon} u_r dr.
$$
Let us define the seminorm
$$
lvert| phi |rvert_K^2 = int_0^T phi(s)^2 K(T,s)^2 ds + int_0^T left(int_s^T left | phi(t) - phi(s) right | (t-s)^{H - frac{3}{2}} dt right)^2 ds
$$
where $K$ satisfies
$$ left | K(t,s) right | leq c((t-s)^{H - frac{1}{2}} + s^{H - frac{1}{2}}) $$ and
$$left | frac{partial K}{partial t} (t,s) right | leq c (t-s)^{H - frac{3}{2}}$$
where $H < frac{1}{2}$. Let $mathcal{H}_K$ be the completion of the set of step functions with respect to the norm defined above. Then at page 614 it is stated that $u_t^epsilon$ converges to $u$ in $mathbb{D}^{1,2}(mathcal{H}_K)$. The key step that I'm missing is the integral estimate done at page 615, in fact I obtain and estimate that also involves the integral:
$$
int_{t_i + 2 epsilon}^{t_{i+1} - 2 epsilon} left( int_{s}^{t_i + 2 epsilon} left| u_t^epsilon - u_s^epsilon right | (t-s)^{H - frac{3}{2}} dt right)^2 ds
$$
and I am not able to state that this integral converges to zero. Any suggestions?
probability-theory measure-theory stochastic-calculus stochastic-analysis malliavin-calculus
$endgroup$
add a comment |
$begingroup$
I'm studying this article https://projecteuclid.org/download/pdf_1/euclid.twjm/1500574954 and I'm having problems understanding the proof of lemma 3.
Let me recall some of the criminals involved. Let $(u_t)_{t in [0,T]}$ be a simple bounded process of the form
$$
u = sum_{j = 0}^{n-1} F_j 1_{(t_s, t_{j+1}]},
$$
let us define
$$
u^epsilon_t = frac{1}{2 epsilon}int_{t - epsilon}^{t+epsilon} u_r dr.
$$
Let us define the seminorm
$$
lvert| phi |rvert_K^2 = int_0^T phi(s)^2 K(T,s)^2 ds + int_0^T left(int_s^T left | phi(t) - phi(s) right | (t-s)^{H - frac{3}{2}} dt right)^2 ds
$$
where $K$ satisfies
$$ left | K(t,s) right | leq c((t-s)^{H - frac{1}{2}} + s^{H - frac{1}{2}}) $$ and
$$left | frac{partial K}{partial t} (t,s) right | leq c (t-s)^{H - frac{3}{2}}$$
where $H < frac{1}{2}$. Let $mathcal{H}_K$ be the completion of the set of step functions with respect to the norm defined above. Then at page 614 it is stated that $u_t^epsilon$ converges to $u$ in $mathbb{D}^{1,2}(mathcal{H}_K)$. The key step that I'm missing is the integral estimate done at page 615, in fact I obtain and estimate that also involves the integral:
$$
int_{t_i + 2 epsilon}^{t_{i+1} - 2 epsilon} left( int_{s}^{t_i + 2 epsilon} left| u_t^epsilon - u_s^epsilon right | (t-s)^{H - frac{3}{2}} dt right)^2 ds
$$
and I am not able to state that this integral converges to zero. Any suggestions?
probability-theory measure-theory stochastic-calculus stochastic-analysis malliavin-calculus
$endgroup$
$begingroup$
Regarding the last integral, don't we have $|u_t^epsilon-u_s^epsilon|=0$ for $s,tin(t_i+2epsilon,t_{i+1}-2epsilon)$?
$endgroup$
– AddSup
Dec 9 '18 at 12:11
$begingroup$
Yes, that is true. Anyway in the integral $int_s^{t_i + 2 epsilon} dots$, $s$ belongs to $[0, t_i + 2 epsilon]$ and that shall not be null.
$endgroup$
– JCF
Dec 9 '18 at 15:29
$begingroup$
I meant $t$ not $s$.
$endgroup$
– JCF
Dec 9 '18 at 15:40
$begingroup$
? In the inner integral, $t$ lies between $s$ and $t_i+2epsilon$ while $s$ lies between $t_i+2epsilon$ and $t_{i+1}-2epsilon$, so $t$, too, lies between $t_i+2epsilon$ and $t_{i+1}-2epsilon$. Where does $0$ in $[0,t_i+2epsilon]$ come from?
$endgroup$
– AddSup
Dec 9 '18 at 16:54
$begingroup$
You're right, stupidly I didn't notice it.
$endgroup$
– JCF
Dec 9 '18 at 17:48
add a comment |
$begingroup$
I'm studying this article https://projecteuclid.org/download/pdf_1/euclid.twjm/1500574954 and I'm having problems understanding the proof of lemma 3.
Let me recall some of the criminals involved. Let $(u_t)_{t in [0,T]}$ be a simple bounded process of the form
$$
u = sum_{j = 0}^{n-1} F_j 1_{(t_s, t_{j+1}]},
$$
let us define
$$
u^epsilon_t = frac{1}{2 epsilon}int_{t - epsilon}^{t+epsilon} u_r dr.
$$
Let us define the seminorm
$$
lvert| phi |rvert_K^2 = int_0^T phi(s)^2 K(T,s)^2 ds + int_0^T left(int_s^T left | phi(t) - phi(s) right | (t-s)^{H - frac{3}{2}} dt right)^2 ds
$$
where $K$ satisfies
$$ left | K(t,s) right | leq c((t-s)^{H - frac{1}{2}} + s^{H - frac{1}{2}}) $$ and
$$left | frac{partial K}{partial t} (t,s) right | leq c (t-s)^{H - frac{3}{2}}$$
where $H < frac{1}{2}$. Let $mathcal{H}_K$ be the completion of the set of step functions with respect to the norm defined above. Then at page 614 it is stated that $u_t^epsilon$ converges to $u$ in $mathbb{D}^{1,2}(mathcal{H}_K)$. The key step that I'm missing is the integral estimate done at page 615, in fact I obtain and estimate that also involves the integral:
$$
int_{t_i + 2 epsilon}^{t_{i+1} - 2 epsilon} left( int_{s}^{t_i + 2 epsilon} left| u_t^epsilon - u_s^epsilon right | (t-s)^{H - frac{3}{2}} dt right)^2 ds
$$
and I am not able to state that this integral converges to zero. Any suggestions?
probability-theory measure-theory stochastic-calculus stochastic-analysis malliavin-calculus
$endgroup$
I'm studying this article https://projecteuclid.org/download/pdf_1/euclid.twjm/1500574954 and I'm having problems understanding the proof of lemma 3.
Let me recall some of the criminals involved. Let $(u_t)_{t in [0,T]}$ be a simple bounded process of the form
$$
u = sum_{j = 0}^{n-1} F_j 1_{(t_s, t_{j+1}]},
$$
let us define
$$
u^epsilon_t = frac{1}{2 epsilon}int_{t - epsilon}^{t+epsilon} u_r dr.
$$
Let us define the seminorm
$$
lvert| phi |rvert_K^2 = int_0^T phi(s)^2 K(T,s)^2 ds + int_0^T left(int_s^T left | phi(t) - phi(s) right | (t-s)^{H - frac{3}{2}} dt right)^2 ds
$$
where $K$ satisfies
$$ left | K(t,s) right | leq c((t-s)^{H - frac{1}{2}} + s^{H - frac{1}{2}}) $$ and
$$left | frac{partial K}{partial t} (t,s) right | leq c (t-s)^{H - frac{3}{2}}$$
where $H < frac{1}{2}$. Let $mathcal{H}_K$ be the completion of the set of step functions with respect to the norm defined above. Then at page 614 it is stated that $u_t^epsilon$ converges to $u$ in $mathbb{D}^{1,2}(mathcal{H}_K)$. The key step that I'm missing is the integral estimate done at page 615, in fact I obtain and estimate that also involves the integral:
$$
int_{t_i + 2 epsilon}^{t_{i+1} - 2 epsilon} left( int_{s}^{t_i + 2 epsilon} left| u_t^epsilon - u_s^epsilon right | (t-s)^{H - frac{3}{2}} dt right)^2 ds
$$
and I am not able to state that this integral converges to zero. Any suggestions?
probability-theory measure-theory stochastic-calculus stochastic-analysis malliavin-calculus
probability-theory measure-theory stochastic-calculus stochastic-analysis malliavin-calculus
edited Dec 8 '18 at 17:23
JCF
asked Dec 8 '18 at 17:09
JCFJCF
349112
349112
$begingroup$
Regarding the last integral, don't we have $|u_t^epsilon-u_s^epsilon|=0$ for $s,tin(t_i+2epsilon,t_{i+1}-2epsilon)$?
$endgroup$
– AddSup
Dec 9 '18 at 12:11
$begingroup$
Yes, that is true. Anyway in the integral $int_s^{t_i + 2 epsilon} dots$, $s$ belongs to $[0, t_i + 2 epsilon]$ and that shall not be null.
$endgroup$
– JCF
Dec 9 '18 at 15:29
$begingroup$
I meant $t$ not $s$.
$endgroup$
– JCF
Dec 9 '18 at 15:40
$begingroup$
? In the inner integral, $t$ lies between $s$ and $t_i+2epsilon$ while $s$ lies between $t_i+2epsilon$ and $t_{i+1}-2epsilon$, so $t$, too, lies between $t_i+2epsilon$ and $t_{i+1}-2epsilon$. Where does $0$ in $[0,t_i+2epsilon]$ come from?
$endgroup$
– AddSup
Dec 9 '18 at 16:54
$begingroup$
You're right, stupidly I didn't notice it.
$endgroup$
– JCF
Dec 9 '18 at 17:48
add a comment |
$begingroup$
Regarding the last integral, don't we have $|u_t^epsilon-u_s^epsilon|=0$ for $s,tin(t_i+2epsilon,t_{i+1}-2epsilon)$?
$endgroup$
– AddSup
Dec 9 '18 at 12:11
$begingroup$
Yes, that is true. Anyway in the integral $int_s^{t_i + 2 epsilon} dots$, $s$ belongs to $[0, t_i + 2 epsilon]$ and that shall not be null.
$endgroup$
– JCF
Dec 9 '18 at 15:29
$begingroup$
I meant $t$ not $s$.
$endgroup$
– JCF
Dec 9 '18 at 15:40
$begingroup$
? In the inner integral, $t$ lies between $s$ and $t_i+2epsilon$ while $s$ lies between $t_i+2epsilon$ and $t_{i+1}-2epsilon$, so $t$, too, lies between $t_i+2epsilon$ and $t_{i+1}-2epsilon$. Where does $0$ in $[0,t_i+2epsilon]$ come from?
$endgroup$
– AddSup
Dec 9 '18 at 16:54
$begingroup$
You're right, stupidly I didn't notice it.
$endgroup$
– JCF
Dec 9 '18 at 17:48
$begingroup$
Regarding the last integral, don't we have $|u_t^epsilon-u_s^epsilon|=0$ for $s,tin(t_i+2epsilon,t_{i+1}-2epsilon)$?
$endgroup$
– AddSup
Dec 9 '18 at 12:11
$begingroup$
Regarding the last integral, don't we have $|u_t^epsilon-u_s^epsilon|=0$ for $s,tin(t_i+2epsilon,t_{i+1}-2epsilon)$?
$endgroup$
– AddSup
Dec 9 '18 at 12:11
$begingroup$
Yes, that is true. Anyway in the integral $int_s^{t_i + 2 epsilon} dots$, $s$ belongs to $[0, t_i + 2 epsilon]$ and that shall not be null.
$endgroup$
– JCF
Dec 9 '18 at 15:29
$begingroup$
Yes, that is true. Anyway in the integral $int_s^{t_i + 2 epsilon} dots$, $s$ belongs to $[0, t_i + 2 epsilon]$ and that shall not be null.
$endgroup$
– JCF
Dec 9 '18 at 15:29
$begingroup$
I meant $t$ not $s$.
$endgroup$
– JCF
Dec 9 '18 at 15:40
$begingroup$
I meant $t$ not $s$.
$endgroup$
– JCF
Dec 9 '18 at 15:40
$begingroup$
? In the inner integral, $t$ lies between $s$ and $t_i+2epsilon$ while $s$ lies between $t_i+2epsilon$ and $t_{i+1}-2epsilon$, so $t$, too, lies between $t_i+2epsilon$ and $t_{i+1}-2epsilon$. Where does $0$ in $[0,t_i+2epsilon]$ come from?
$endgroup$
– AddSup
Dec 9 '18 at 16:54
$begingroup$
? In the inner integral, $t$ lies between $s$ and $t_i+2epsilon$ while $s$ lies between $t_i+2epsilon$ and $t_{i+1}-2epsilon$, so $t$, too, lies between $t_i+2epsilon$ and $t_{i+1}-2epsilon$. Where does $0$ in $[0,t_i+2epsilon]$ come from?
$endgroup$
– AddSup
Dec 9 '18 at 16:54
$begingroup$
You're right, stupidly I didn't notice it.
$endgroup$
– JCF
Dec 9 '18 at 17:48
$begingroup$
You're right, stupidly I didn't notice it.
$endgroup$
– JCF
Dec 9 '18 at 17:48
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031363%2fa-construction-of-a-stratonovich-type-integral-for-fractional-brownian-motion%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031363%2fa-construction-of-a-stratonovich-type-integral-for-fractional-brownian-motion%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Regarding the last integral, don't we have $|u_t^epsilon-u_s^epsilon|=0$ for $s,tin(t_i+2epsilon,t_{i+1}-2epsilon)$?
$endgroup$
– AddSup
Dec 9 '18 at 12:11
$begingroup$
Yes, that is true. Anyway in the integral $int_s^{t_i + 2 epsilon} dots$, $s$ belongs to $[0, t_i + 2 epsilon]$ and that shall not be null.
$endgroup$
– JCF
Dec 9 '18 at 15:29
$begingroup$
I meant $t$ not $s$.
$endgroup$
– JCF
Dec 9 '18 at 15:40
$begingroup$
? In the inner integral, $t$ lies between $s$ and $t_i+2epsilon$ while $s$ lies between $t_i+2epsilon$ and $t_{i+1}-2epsilon$, so $t$, too, lies between $t_i+2epsilon$ and $t_{i+1}-2epsilon$. Where does $0$ in $[0,t_i+2epsilon]$ come from?
$endgroup$
– AddSup
Dec 9 '18 at 16:54
$begingroup$
You're right, stupidly I didn't notice it.
$endgroup$
– JCF
Dec 9 '18 at 17:48