Show $overline{e^{itheta}} = e^{-itheta}$ using trig identities












0












$begingroup$


My book claims we can verify this using "standard trigonometric identities." The notation of the right-hand side is throwing me off. Does that mean the complex conjugate of $e^{itheta}$ equals its multiplicative inverse, i.e. $frac{1}{e^{itheta}}$?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    My book claims we can verify this using "standard trigonometric identities." The notation of the right-hand side is throwing me off. Does that mean the complex conjugate of $e^{itheta}$ equals its multiplicative inverse, i.e. $frac{1}{e^{itheta}}$?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      My book claims we can verify this using "standard trigonometric identities." The notation of the right-hand side is throwing me off. Does that mean the complex conjugate of $e^{itheta}$ equals its multiplicative inverse, i.e. $frac{1}{e^{itheta}}$?










      share|cite|improve this question











      $endgroup$




      My book claims we can verify this using "standard trigonometric identities." The notation of the right-hand side is throwing me off. Does that mean the complex conjugate of $e^{itheta}$ equals its multiplicative inverse, i.e. $frac{1}{e^{itheta}}$?







      trigonometry complex-numbers notation exponential-function






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 16 '18 at 21:01









      Eric Wofsey

      186k14215342




      186k14215342










      asked Dec 8 '18 at 17:25









      hiroshinhiroshin

      666




      666






















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          Yes. You have
          $$
          e^{it}=cos t+isin t.
          $$

          And
          $$
          e^{-it}=frac1{e^{it}}=frac1{cos t+isin t}=frac{cos t-isin t}{cos^2t+sin^2t}=cos t-isin t=overline{e^{it}}.
          $$






          share|cite|improve this answer









          $endgroup$





















            4












            $begingroup$

            Recall that
            $$ e^{itheta} = costheta+isintheta, quad text{so} quad overline{e^{itheta}} = costheta-isintheta = cos(-theta)+isin(-theta) = e^{i(-theta)} = e^{-itheta}, $$
            since the cosine is even while the sine is odd.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031377%2fshow-overlineei-theta-e-i-theta-using-trig-identities%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              4












              $begingroup$

              Yes. You have
              $$
              e^{it}=cos t+isin t.
              $$

              And
              $$
              e^{-it}=frac1{e^{it}}=frac1{cos t+isin t}=frac{cos t-isin t}{cos^2t+sin^2t}=cos t-isin t=overline{e^{it}}.
              $$






              share|cite|improve this answer









              $endgroup$


















                4












                $begingroup$

                Yes. You have
                $$
                e^{it}=cos t+isin t.
                $$

                And
                $$
                e^{-it}=frac1{e^{it}}=frac1{cos t+isin t}=frac{cos t-isin t}{cos^2t+sin^2t}=cos t-isin t=overline{e^{it}}.
                $$






                share|cite|improve this answer









                $endgroup$
















                  4












                  4








                  4





                  $begingroup$

                  Yes. You have
                  $$
                  e^{it}=cos t+isin t.
                  $$

                  And
                  $$
                  e^{-it}=frac1{e^{it}}=frac1{cos t+isin t}=frac{cos t-isin t}{cos^2t+sin^2t}=cos t-isin t=overline{e^{it}}.
                  $$






                  share|cite|improve this answer









                  $endgroup$



                  Yes. You have
                  $$
                  e^{it}=cos t+isin t.
                  $$

                  And
                  $$
                  e^{-it}=frac1{e^{it}}=frac1{cos t+isin t}=frac{cos t-isin t}{cos^2t+sin^2t}=cos t-isin t=overline{e^{it}}.
                  $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 8 '18 at 17:27









                  Martin ArgeramiMartin Argerami

                  127k1182183




                  127k1182183























                      4












                      $begingroup$

                      Recall that
                      $$ e^{itheta} = costheta+isintheta, quad text{so} quad overline{e^{itheta}} = costheta-isintheta = cos(-theta)+isin(-theta) = e^{i(-theta)} = e^{-itheta}, $$
                      since the cosine is even while the sine is odd.






                      share|cite|improve this answer









                      $endgroup$


















                        4












                        $begingroup$

                        Recall that
                        $$ e^{itheta} = costheta+isintheta, quad text{so} quad overline{e^{itheta}} = costheta-isintheta = cos(-theta)+isin(-theta) = e^{i(-theta)} = e^{-itheta}, $$
                        since the cosine is even while the sine is odd.






                        share|cite|improve this answer









                        $endgroup$
















                          4












                          4








                          4





                          $begingroup$

                          Recall that
                          $$ e^{itheta} = costheta+isintheta, quad text{so} quad overline{e^{itheta}} = costheta-isintheta = cos(-theta)+isin(-theta) = e^{i(-theta)} = e^{-itheta}, $$
                          since the cosine is even while the sine is odd.






                          share|cite|improve this answer









                          $endgroup$



                          Recall that
                          $$ e^{itheta} = costheta+isintheta, quad text{so} quad overline{e^{itheta}} = costheta-isintheta = cos(-theta)+isin(-theta) = e^{i(-theta)} = e^{-itheta}, $$
                          since the cosine is even while the sine is odd.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 8 '18 at 17:28









                          MisterRiemannMisterRiemann

                          5,8021625




                          5,8021625






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031377%2fshow-overlineei-theta-e-i-theta-using-trig-identities%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Plaza Victoria

                              Puebla de Zaragoza

                              Musa