Euler's Number Identity
$begingroup$
In pre-calc, we learned that
$$sum_{k=0}^{infty} frac{1}{k!} = lim_{ntoinfty}left(1+frac{1}{n}right)^{n}$$
I expanded the right hand side using Binomial Theorem. Here are my steps:
$$(x+y)^{n} = sum_{k=0}^{n} {n choose k} cdot x^{n-k}cdot y^{k}$$
$$x = 1, spacespacespacespacespacespacespace y = frac{1}{n}$$
Plugging that in gives:
$$lim_{ntoinfty}left(1+frac{1}{n}right)^{n} = lim_{ntoinfty}left(sum_{k=0}^{n} {n choose k} cdot frac{1}{n^k}right)$$
That means that
$$sum_{k=0}^{infty} frac{1}{k!} = lim_{ntoinfty}left(sum_{k=0}^{n} {n choose k} cdot y^{k}right)$$
Could anyone help me finish this? Ideally, an explanation accessible to a middle school pre-calc student. Thanks.
algebra-precalculus
$endgroup$
add a comment |
$begingroup$
In pre-calc, we learned that
$$sum_{k=0}^{infty} frac{1}{k!} = lim_{ntoinfty}left(1+frac{1}{n}right)^{n}$$
I expanded the right hand side using Binomial Theorem. Here are my steps:
$$(x+y)^{n} = sum_{k=0}^{n} {n choose k} cdot x^{n-k}cdot y^{k}$$
$$x = 1, spacespacespacespacespacespacespace y = frac{1}{n}$$
Plugging that in gives:
$$lim_{ntoinfty}left(1+frac{1}{n}right)^{n} = lim_{ntoinfty}left(sum_{k=0}^{n} {n choose k} cdot frac{1}{n^k}right)$$
That means that
$$sum_{k=0}^{infty} frac{1}{k!} = lim_{ntoinfty}left(sum_{k=0}^{n} {n choose k} cdot y^{k}right)$$
Could anyone help me finish this? Ideally, an explanation accessible to a middle school pre-calc student. Thanks.
algebra-precalculus
$endgroup$
3
$begingroup$
I am going to point you to "baby Rudin" theorem 3.31, page 64 notendur.hi.is/vae11/%C3%9Eekking/…
$endgroup$
– Doug M
Dec 12 '18 at 18:59
add a comment |
$begingroup$
In pre-calc, we learned that
$$sum_{k=0}^{infty} frac{1}{k!} = lim_{ntoinfty}left(1+frac{1}{n}right)^{n}$$
I expanded the right hand side using Binomial Theorem. Here are my steps:
$$(x+y)^{n} = sum_{k=0}^{n} {n choose k} cdot x^{n-k}cdot y^{k}$$
$$x = 1, spacespacespacespacespacespacespace y = frac{1}{n}$$
Plugging that in gives:
$$lim_{ntoinfty}left(1+frac{1}{n}right)^{n} = lim_{ntoinfty}left(sum_{k=0}^{n} {n choose k} cdot frac{1}{n^k}right)$$
That means that
$$sum_{k=0}^{infty} frac{1}{k!} = lim_{ntoinfty}left(sum_{k=0}^{n} {n choose k} cdot y^{k}right)$$
Could anyone help me finish this? Ideally, an explanation accessible to a middle school pre-calc student. Thanks.
algebra-precalculus
$endgroup$
In pre-calc, we learned that
$$sum_{k=0}^{infty} frac{1}{k!} = lim_{ntoinfty}left(1+frac{1}{n}right)^{n}$$
I expanded the right hand side using Binomial Theorem. Here are my steps:
$$(x+y)^{n} = sum_{k=0}^{n} {n choose k} cdot x^{n-k}cdot y^{k}$$
$$x = 1, spacespacespacespacespacespacespace y = frac{1}{n}$$
Plugging that in gives:
$$lim_{ntoinfty}left(1+frac{1}{n}right)^{n} = lim_{ntoinfty}left(sum_{k=0}^{n} {n choose k} cdot frac{1}{n^k}right)$$
That means that
$$sum_{k=0}^{infty} frac{1}{k!} = lim_{ntoinfty}left(sum_{k=0}^{n} {n choose k} cdot y^{k}right)$$
Could anyone help me finish this? Ideally, an explanation accessible to a middle school pre-calc student. Thanks.
algebra-precalculus
algebra-precalculus
edited Dec 12 '18 at 19:29
saulspatz
15.9k31331
15.9k31331
asked Dec 12 '18 at 18:45
IlikemathIlikemath
164
164
3
$begingroup$
I am going to point you to "baby Rudin" theorem 3.31, page 64 notendur.hi.is/vae11/%C3%9Eekking/…
$endgroup$
– Doug M
Dec 12 '18 at 18:59
add a comment |
3
$begingroup$
I am going to point you to "baby Rudin" theorem 3.31, page 64 notendur.hi.is/vae11/%C3%9Eekking/…
$endgroup$
– Doug M
Dec 12 '18 at 18:59
3
3
$begingroup$
I am going to point you to "baby Rudin" theorem 3.31, page 64 notendur.hi.is/vae11/%C3%9Eekking/…
$endgroup$
– Doug M
Dec 12 '18 at 18:59
$begingroup$
I am going to point you to "baby Rudin" theorem 3.31, page 64 notendur.hi.is/vae11/%C3%9Eekking/…
$endgroup$
– Doug M
Dec 12 '18 at 18:59
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
$$begin{pmatrix}n\kend{pmatrix}.frac{1}{n^k}=frac{n!}{n^kk!(n-k)!}$$
but I believe that you have got confused here. The easiest way to do it is:
$$left(1+frac1nright)^n=1+n.frac1n+frac{n(n-1)}{2!times n^2}+frac{n(n-1)(n-2)}{3!times n^3}...$$
and so we get that:
$$lim_{ntoinfty}left(1+frac1nright)^n=lim_{ntoinfty}left(1+n.frac1n+frac{n(n-1)}{2!times n^2}+frac{n(n-1)(n-2)}{3!times n^3}...right)=1+1+frac{1}{2!}+frac{1}{3!}...$$
$$=sum_{n=0}^inftyfrac{1}{n!}$$
$endgroup$
add a comment |
$begingroup$
Hint: You can easily find the value of the limit using $log$ technique. Also, you can find a solution using Taylor's series of $e^x$! To know more see here.
$endgroup$
$begingroup$
Thanks. I will look up taylor series. It looks like it has calculus involved. en.wikipedia.org/wiki/Taylor_series. Maybe i can just use logs?
$endgroup$
– Ilikemath
Dec 12 '18 at 18:52
add a comment |
$begingroup$
First note
$$left(1+frac1nright)^n=sum_{k=0}^nfrac{n!}{k!(n-k)!}frac{1}{n^{n-k}}=sum_{k=0}^nfrac{n(n-1)cdots(n-k+1)}{n^{n-k}}frac{1}{k!}lesum_{k=0}^nfrac{1}{k!}. $$
For the fixed $m<n$,
$$left(1+frac1nright)^n=sum_{k=0}^nfrac{n!}{k!(n-k)!}frac{1}{n^{n-k}}>sum_{k=0}^mfrac{n(n-1)cdots(n-k+1)}{n^{n-k}}frac{1}{k!}gesum_{k=0}^mleft(1-frac{1}{n}right)left(1-frac{2}{n}right)cdotsleft(1-frac{k-1}{n}right)frac{1}{k!}. $$
Let $ntoinfty$, one has
$$ lim_{ntoinfty}left(1+frac1nright)^ngesum_{k=0}^mfrac{1}{k!}. $$
So for any $m$,
$$ sum_{k=0}^mfrac{1}{k!}lelim_{ntoinfty}left(1+frac1nright)^nle e. $$
Let $mtoinfty$, one has
$$ sum_{k=0}^inftyfrac{1}{k!}=lim_{ntoinfty}left(1+frac1nright)^n= e. $$
$endgroup$
add a comment |
$begingroup$
Let’s extend this to a more general form$$e^x=limlimits_{ntoinfty}left(1+frac xnright)^n$$Expand the right - hand side with the binomial theorem to get that$$begin{align*}e^x & =limlimits_{ntoinfty}left[1+ncdotfrac {x}{n}+frac {n(n-1)}{2!}left(frac xnright)^2+frac {n(n-1)(n-2)}{3!}left(frac xnright)^3+cdotsright]\ & =limlimits_{ntoinfty}left[1+x+frac {(n^2-n)x^2}{2!n^2}+frac {(n^3-3n^2+2n)x^3}{3!n^3}+cdotsright]\ & =1+x+frac {x^2}{2!}+frac {x^3}{3!}+cdotsend{align*}$$Therefore$$e^xcolor{blue}{=sumlimits_{ngeq0}frac {x^n}{n!}}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037073%2feulers-number-identity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$begin{pmatrix}n\kend{pmatrix}.frac{1}{n^k}=frac{n!}{n^kk!(n-k)!}$$
but I believe that you have got confused here. The easiest way to do it is:
$$left(1+frac1nright)^n=1+n.frac1n+frac{n(n-1)}{2!times n^2}+frac{n(n-1)(n-2)}{3!times n^3}...$$
and so we get that:
$$lim_{ntoinfty}left(1+frac1nright)^n=lim_{ntoinfty}left(1+n.frac1n+frac{n(n-1)}{2!times n^2}+frac{n(n-1)(n-2)}{3!times n^3}...right)=1+1+frac{1}{2!}+frac{1}{3!}...$$
$$=sum_{n=0}^inftyfrac{1}{n!}$$
$endgroup$
add a comment |
$begingroup$
$$begin{pmatrix}n\kend{pmatrix}.frac{1}{n^k}=frac{n!}{n^kk!(n-k)!}$$
but I believe that you have got confused here. The easiest way to do it is:
$$left(1+frac1nright)^n=1+n.frac1n+frac{n(n-1)}{2!times n^2}+frac{n(n-1)(n-2)}{3!times n^3}...$$
and so we get that:
$$lim_{ntoinfty}left(1+frac1nright)^n=lim_{ntoinfty}left(1+n.frac1n+frac{n(n-1)}{2!times n^2}+frac{n(n-1)(n-2)}{3!times n^3}...right)=1+1+frac{1}{2!}+frac{1}{3!}...$$
$$=sum_{n=0}^inftyfrac{1}{n!}$$
$endgroup$
add a comment |
$begingroup$
$$begin{pmatrix}n\kend{pmatrix}.frac{1}{n^k}=frac{n!}{n^kk!(n-k)!}$$
but I believe that you have got confused here. The easiest way to do it is:
$$left(1+frac1nright)^n=1+n.frac1n+frac{n(n-1)}{2!times n^2}+frac{n(n-1)(n-2)}{3!times n^3}...$$
and so we get that:
$$lim_{ntoinfty}left(1+frac1nright)^n=lim_{ntoinfty}left(1+n.frac1n+frac{n(n-1)}{2!times n^2}+frac{n(n-1)(n-2)}{3!times n^3}...right)=1+1+frac{1}{2!}+frac{1}{3!}...$$
$$=sum_{n=0}^inftyfrac{1}{n!}$$
$endgroup$
$$begin{pmatrix}n\kend{pmatrix}.frac{1}{n^k}=frac{n!}{n^kk!(n-k)!}$$
but I believe that you have got confused here. The easiest way to do it is:
$$left(1+frac1nright)^n=1+n.frac1n+frac{n(n-1)}{2!times n^2}+frac{n(n-1)(n-2)}{3!times n^3}...$$
and so we get that:
$$lim_{ntoinfty}left(1+frac1nright)^n=lim_{ntoinfty}left(1+n.frac1n+frac{n(n-1)}{2!times n^2}+frac{n(n-1)(n-2)}{3!times n^3}...right)=1+1+frac{1}{2!}+frac{1}{3!}...$$
$$=sum_{n=0}^inftyfrac{1}{n!}$$
answered Dec 12 '18 at 19:12
Henry LeeHenry Lee
2,054219
2,054219
add a comment |
add a comment |
$begingroup$
Hint: You can easily find the value of the limit using $log$ technique. Also, you can find a solution using Taylor's series of $e^x$! To know more see here.
$endgroup$
$begingroup$
Thanks. I will look up taylor series. It looks like it has calculus involved. en.wikipedia.org/wiki/Taylor_series. Maybe i can just use logs?
$endgroup$
– Ilikemath
Dec 12 '18 at 18:52
add a comment |
$begingroup$
Hint: You can easily find the value of the limit using $log$ technique. Also, you can find a solution using Taylor's series of $e^x$! To know more see here.
$endgroup$
$begingroup$
Thanks. I will look up taylor series. It looks like it has calculus involved. en.wikipedia.org/wiki/Taylor_series. Maybe i can just use logs?
$endgroup$
– Ilikemath
Dec 12 '18 at 18:52
add a comment |
$begingroup$
Hint: You can easily find the value of the limit using $log$ technique. Also, you can find a solution using Taylor's series of $e^x$! To know more see here.
$endgroup$
Hint: You can easily find the value of the limit using $log$ technique. Also, you can find a solution using Taylor's series of $e^x$! To know more see here.
edited Dec 12 '18 at 18:54
answered Dec 12 '18 at 18:47
OmGOmG
2,502822
2,502822
$begingroup$
Thanks. I will look up taylor series. It looks like it has calculus involved. en.wikipedia.org/wiki/Taylor_series. Maybe i can just use logs?
$endgroup$
– Ilikemath
Dec 12 '18 at 18:52
add a comment |
$begingroup$
Thanks. I will look up taylor series. It looks like it has calculus involved. en.wikipedia.org/wiki/Taylor_series. Maybe i can just use logs?
$endgroup$
– Ilikemath
Dec 12 '18 at 18:52
$begingroup$
Thanks. I will look up taylor series. It looks like it has calculus involved. en.wikipedia.org/wiki/Taylor_series. Maybe i can just use logs?
$endgroup$
– Ilikemath
Dec 12 '18 at 18:52
$begingroup$
Thanks. I will look up taylor series. It looks like it has calculus involved. en.wikipedia.org/wiki/Taylor_series. Maybe i can just use logs?
$endgroup$
– Ilikemath
Dec 12 '18 at 18:52
add a comment |
$begingroup$
First note
$$left(1+frac1nright)^n=sum_{k=0}^nfrac{n!}{k!(n-k)!}frac{1}{n^{n-k}}=sum_{k=0}^nfrac{n(n-1)cdots(n-k+1)}{n^{n-k}}frac{1}{k!}lesum_{k=0}^nfrac{1}{k!}. $$
For the fixed $m<n$,
$$left(1+frac1nright)^n=sum_{k=0}^nfrac{n!}{k!(n-k)!}frac{1}{n^{n-k}}>sum_{k=0}^mfrac{n(n-1)cdots(n-k+1)}{n^{n-k}}frac{1}{k!}gesum_{k=0}^mleft(1-frac{1}{n}right)left(1-frac{2}{n}right)cdotsleft(1-frac{k-1}{n}right)frac{1}{k!}. $$
Let $ntoinfty$, one has
$$ lim_{ntoinfty}left(1+frac1nright)^ngesum_{k=0}^mfrac{1}{k!}. $$
So for any $m$,
$$ sum_{k=0}^mfrac{1}{k!}lelim_{ntoinfty}left(1+frac1nright)^nle e. $$
Let $mtoinfty$, one has
$$ sum_{k=0}^inftyfrac{1}{k!}=lim_{ntoinfty}left(1+frac1nright)^n= e. $$
$endgroup$
add a comment |
$begingroup$
First note
$$left(1+frac1nright)^n=sum_{k=0}^nfrac{n!}{k!(n-k)!}frac{1}{n^{n-k}}=sum_{k=0}^nfrac{n(n-1)cdots(n-k+1)}{n^{n-k}}frac{1}{k!}lesum_{k=0}^nfrac{1}{k!}. $$
For the fixed $m<n$,
$$left(1+frac1nright)^n=sum_{k=0}^nfrac{n!}{k!(n-k)!}frac{1}{n^{n-k}}>sum_{k=0}^mfrac{n(n-1)cdots(n-k+1)}{n^{n-k}}frac{1}{k!}gesum_{k=0}^mleft(1-frac{1}{n}right)left(1-frac{2}{n}right)cdotsleft(1-frac{k-1}{n}right)frac{1}{k!}. $$
Let $ntoinfty$, one has
$$ lim_{ntoinfty}left(1+frac1nright)^ngesum_{k=0}^mfrac{1}{k!}. $$
So for any $m$,
$$ sum_{k=0}^mfrac{1}{k!}lelim_{ntoinfty}left(1+frac1nright)^nle e. $$
Let $mtoinfty$, one has
$$ sum_{k=0}^inftyfrac{1}{k!}=lim_{ntoinfty}left(1+frac1nright)^n= e. $$
$endgroup$
add a comment |
$begingroup$
First note
$$left(1+frac1nright)^n=sum_{k=0}^nfrac{n!}{k!(n-k)!}frac{1}{n^{n-k}}=sum_{k=0}^nfrac{n(n-1)cdots(n-k+1)}{n^{n-k}}frac{1}{k!}lesum_{k=0}^nfrac{1}{k!}. $$
For the fixed $m<n$,
$$left(1+frac1nright)^n=sum_{k=0}^nfrac{n!}{k!(n-k)!}frac{1}{n^{n-k}}>sum_{k=0}^mfrac{n(n-1)cdots(n-k+1)}{n^{n-k}}frac{1}{k!}gesum_{k=0}^mleft(1-frac{1}{n}right)left(1-frac{2}{n}right)cdotsleft(1-frac{k-1}{n}right)frac{1}{k!}. $$
Let $ntoinfty$, one has
$$ lim_{ntoinfty}left(1+frac1nright)^ngesum_{k=0}^mfrac{1}{k!}. $$
So for any $m$,
$$ sum_{k=0}^mfrac{1}{k!}lelim_{ntoinfty}left(1+frac1nright)^nle e. $$
Let $mtoinfty$, one has
$$ sum_{k=0}^inftyfrac{1}{k!}=lim_{ntoinfty}left(1+frac1nright)^n= e. $$
$endgroup$
First note
$$left(1+frac1nright)^n=sum_{k=0}^nfrac{n!}{k!(n-k)!}frac{1}{n^{n-k}}=sum_{k=0}^nfrac{n(n-1)cdots(n-k+1)}{n^{n-k}}frac{1}{k!}lesum_{k=0}^nfrac{1}{k!}. $$
For the fixed $m<n$,
$$left(1+frac1nright)^n=sum_{k=0}^nfrac{n!}{k!(n-k)!}frac{1}{n^{n-k}}>sum_{k=0}^mfrac{n(n-1)cdots(n-k+1)}{n^{n-k}}frac{1}{k!}gesum_{k=0}^mleft(1-frac{1}{n}right)left(1-frac{2}{n}right)cdotsleft(1-frac{k-1}{n}right)frac{1}{k!}. $$
Let $ntoinfty$, one has
$$ lim_{ntoinfty}left(1+frac1nright)^ngesum_{k=0}^mfrac{1}{k!}. $$
So for any $m$,
$$ sum_{k=0}^mfrac{1}{k!}lelim_{ntoinfty}left(1+frac1nright)^nle e. $$
Let $mtoinfty$, one has
$$ sum_{k=0}^inftyfrac{1}{k!}=lim_{ntoinfty}left(1+frac1nright)^n= e. $$
answered Dec 12 '18 at 20:34
xpaulxpaul
23k24455
23k24455
add a comment |
add a comment |
$begingroup$
Let’s extend this to a more general form$$e^x=limlimits_{ntoinfty}left(1+frac xnright)^n$$Expand the right - hand side with the binomial theorem to get that$$begin{align*}e^x & =limlimits_{ntoinfty}left[1+ncdotfrac {x}{n}+frac {n(n-1)}{2!}left(frac xnright)^2+frac {n(n-1)(n-2)}{3!}left(frac xnright)^3+cdotsright]\ & =limlimits_{ntoinfty}left[1+x+frac {(n^2-n)x^2}{2!n^2}+frac {(n^3-3n^2+2n)x^3}{3!n^3}+cdotsright]\ & =1+x+frac {x^2}{2!}+frac {x^3}{3!}+cdotsend{align*}$$Therefore$$e^xcolor{blue}{=sumlimits_{ngeq0}frac {x^n}{n!}}$$
$endgroup$
add a comment |
$begingroup$
Let’s extend this to a more general form$$e^x=limlimits_{ntoinfty}left(1+frac xnright)^n$$Expand the right - hand side with the binomial theorem to get that$$begin{align*}e^x & =limlimits_{ntoinfty}left[1+ncdotfrac {x}{n}+frac {n(n-1)}{2!}left(frac xnright)^2+frac {n(n-1)(n-2)}{3!}left(frac xnright)^3+cdotsright]\ & =limlimits_{ntoinfty}left[1+x+frac {(n^2-n)x^2}{2!n^2}+frac {(n^3-3n^2+2n)x^3}{3!n^3}+cdotsright]\ & =1+x+frac {x^2}{2!}+frac {x^3}{3!}+cdotsend{align*}$$Therefore$$e^xcolor{blue}{=sumlimits_{ngeq0}frac {x^n}{n!}}$$
$endgroup$
add a comment |
$begingroup$
Let’s extend this to a more general form$$e^x=limlimits_{ntoinfty}left(1+frac xnright)^n$$Expand the right - hand side with the binomial theorem to get that$$begin{align*}e^x & =limlimits_{ntoinfty}left[1+ncdotfrac {x}{n}+frac {n(n-1)}{2!}left(frac xnright)^2+frac {n(n-1)(n-2)}{3!}left(frac xnright)^3+cdotsright]\ & =limlimits_{ntoinfty}left[1+x+frac {(n^2-n)x^2}{2!n^2}+frac {(n^3-3n^2+2n)x^3}{3!n^3}+cdotsright]\ & =1+x+frac {x^2}{2!}+frac {x^3}{3!}+cdotsend{align*}$$Therefore$$e^xcolor{blue}{=sumlimits_{ngeq0}frac {x^n}{n!}}$$
$endgroup$
Let’s extend this to a more general form$$e^x=limlimits_{ntoinfty}left(1+frac xnright)^n$$Expand the right - hand side with the binomial theorem to get that$$begin{align*}e^x & =limlimits_{ntoinfty}left[1+ncdotfrac {x}{n}+frac {n(n-1)}{2!}left(frac xnright)^2+frac {n(n-1)(n-2)}{3!}left(frac xnright)^3+cdotsright]\ & =limlimits_{ntoinfty}left[1+x+frac {(n^2-n)x^2}{2!n^2}+frac {(n^3-3n^2+2n)x^3}{3!n^3}+cdotsright]\ & =1+x+frac {x^2}{2!}+frac {x^3}{3!}+cdotsend{align*}$$Therefore$$e^xcolor{blue}{=sumlimits_{ngeq0}frac {x^n}{n!}}$$
answered Dec 12 '18 at 20:54
Frank W.Frank W.
3,7351321
3,7351321
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037073%2feulers-number-identity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
I am going to point you to "baby Rudin" theorem 3.31, page 64 notendur.hi.is/vae11/%C3%9Eekking/…
$endgroup$
– Doug M
Dec 12 '18 at 18:59