Mass transport equation Cartesian to polar coordinates












0












$begingroup$


Can someone please advise on how to transform the following equation to polar coordinates?
$$frac{partial rho(x,t)}{partial t}=vfrac{partial left(rho(x,t) L(x)right)}{partial x}+Dfrac{partial}{partial x}left(L(x)frac{partial rho(x,t)}{partial x}right)$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    This looks like one dimensional equation (no $y$ and $z$), so no need to transform to polar coordinates
    $endgroup$
    – Andrei
    Dec 12 '18 at 18:55










  • $begingroup$
    What polar coordinates? There is only a one-dimensional coordinate $x$ here
    $endgroup$
    – Federico
    Dec 12 '18 at 18:55










  • $begingroup$
    Maybe you mean $partial_t rho + mathrm{div}(rho V + D nablarho)=0$? As in the en.wikipedia.org/wiki/Fokker%E2%80%93Planck_equation
    $endgroup$
    – Federico
    Dec 12 '18 at 18:57












  • $begingroup$
    You can write in several forms, see also here: en.wikipedia.org/wiki/Convection%E2%80%93diffusion_equation
    $endgroup$
    – Federico
    Dec 12 '18 at 18:59










  • $begingroup$
    You just have to use the formula for the divergence in polar coordinates
    $endgroup$
    – Federico
    Dec 12 '18 at 18:59
















0












$begingroup$


Can someone please advise on how to transform the following equation to polar coordinates?
$$frac{partial rho(x,t)}{partial t}=vfrac{partial left(rho(x,t) L(x)right)}{partial x}+Dfrac{partial}{partial x}left(L(x)frac{partial rho(x,t)}{partial x}right)$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    This looks like one dimensional equation (no $y$ and $z$), so no need to transform to polar coordinates
    $endgroup$
    – Andrei
    Dec 12 '18 at 18:55










  • $begingroup$
    What polar coordinates? There is only a one-dimensional coordinate $x$ here
    $endgroup$
    – Federico
    Dec 12 '18 at 18:55










  • $begingroup$
    Maybe you mean $partial_t rho + mathrm{div}(rho V + D nablarho)=0$? As in the en.wikipedia.org/wiki/Fokker%E2%80%93Planck_equation
    $endgroup$
    – Federico
    Dec 12 '18 at 18:57












  • $begingroup$
    You can write in several forms, see also here: en.wikipedia.org/wiki/Convection%E2%80%93diffusion_equation
    $endgroup$
    – Federico
    Dec 12 '18 at 18:59










  • $begingroup$
    You just have to use the formula for the divergence in polar coordinates
    $endgroup$
    – Federico
    Dec 12 '18 at 18:59














0












0








0





$begingroup$


Can someone please advise on how to transform the following equation to polar coordinates?
$$frac{partial rho(x,t)}{partial t}=vfrac{partial left(rho(x,t) L(x)right)}{partial x}+Dfrac{partial}{partial x}left(L(x)frac{partial rho(x,t)}{partial x}right)$$










share|cite|improve this question











$endgroup$




Can someone please advise on how to transform the following equation to polar coordinates?
$$frac{partial rho(x,t)}{partial t}=vfrac{partial left(rho(x,t) L(x)right)}{partial x}+Dfrac{partial}{partial x}left(L(x)frac{partial rho(x,t)}{partial x}right)$$







multivariable-calculus pde polar-coordinates






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 13 '18 at 10:53









Harry49

7,44431340




7,44431340










asked Dec 12 '18 at 18:52









jarheadjarhead

1308




1308












  • $begingroup$
    This looks like one dimensional equation (no $y$ and $z$), so no need to transform to polar coordinates
    $endgroup$
    – Andrei
    Dec 12 '18 at 18:55










  • $begingroup$
    What polar coordinates? There is only a one-dimensional coordinate $x$ here
    $endgroup$
    – Federico
    Dec 12 '18 at 18:55










  • $begingroup$
    Maybe you mean $partial_t rho + mathrm{div}(rho V + D nablarho)=0$? As in the en.wikipedia.org/wiki/Fokker%E2%80%93Planck_equation
    $endgroup$
    – Federico
    Dec 12 '18 at 18:57












  • $begingroup$
    You can write in several forms, see also here: en.wikipedia.org/wiki/Convection%E2%80%93diffusion_equation
    $endgroup$
    – Federico
    Dec 12 '18 at 18:59










  • $begingroup$
    You just have to use the formula for the divergence in polar coordinates
    $endgroup$
    – Federico
    Dec 12 '18 at 18:59


















  • $begingroup$
    This looks like one dimensional equation (no $y$ and $z$), so no need to transform to polar coordinates
    $endgroup$
    – Andrei
    Dec 12 '18 at 18:55










  • $begingroup$
    What polar coordinates? There is only a one-dimensional coordinate $x$ here
    $endgroup$
    – Federico
    Dec 12 '18 at 18:55










  • $begingroup$
    Maybe you mean $partial_t rho + mathrm{div}(rho V + D nablarho)=0$? As in the en.wikipedia.org/wiki/Fokker%E2%80%93Planck_equation
    $endgroup$
    – Federico
    Dec 12 '18 at 18:57












  • $begingroup$
    You can write in several forms, see also here: en.wikipedia.org/wiki/Convection%E2%80%93diffusion_equation
    $endgroup$
    – Federico
    Dec 12 '18 at 18:59










  • $begingroup$
    You just have to use the formula for the divergence in polar coordinates
    $endgroup$
    – Federico
    Dec 12 '18 at 18:59
















$begingroup$
This looks like one dimensional equation (no $y$ and $z$), so no need to transform to polar coordinates
$endgroup$
– Andrei
Dec 12 '18 at 18:55




$begingroup$
This looks like one dimensional equation (no $y$ and $z$), so no need to transform to polar coordinates
$endgroup$
– Andrei
Dec 12 '18 at 18:55












$begingroup$
What polar coordinates? There is only a one-dimensional coordinate $x$ here
$endgroup$
– Federico
Dec 12 '18 at 18:55




$begingroup$
What polar coordinates? There is only a one-dimensional coordinate $x$ here
$endgroup$
– Federico
Dec 12 '18 at 18:55












$begingroup$
Maybe you mean $partial_t rho + mathrm{div}(rho V + D nablarho)=0$? As in the en.wikipedia.org/wiki/Fokker%E2%80%93Planck_equation
$endgroup$
– Federico
Dec 12 '18 at 18:57






$begingroup$
Maybe you mean $partial_t rho + mathrm{div}(rho V + D nablarho)=0$? As in the en.wikipedia.org/wiki/Fokker%E2%80%93Planck_equation
$endgroup$
– Federico
Dec 12 '18 at 18:57














$begingroup$
You can write in several forms, see also here: en.wikipedia.org/wiki/Convection%E2%80%93diffusion_equation
$endgroup$
– Federico
Dec 12 '18 at 18:59




$begingroup$
You can write in several forms, see also here: en.wikipedia.org/wiki/Convection%E2%80%93diffusion_equation
$endgroup$
– Federico
Dec 12 '18 at 18:59












$begingroup$
You just have to use the formula for the divergence in polar coordinates
$endgroup$
– Federico
Dec 12 '18 at 18:59




$begingroup$
You just have to use the formula for the divergence in polar coordinates
$endgroup$
– Federico
Dec 12 '18 at 18:59










1 Answer
1






active

oldest

votes


















1












$begingroup$

This is a convection-diffusion equation
$$
frac{partial rho}{partial t} = nablacdot(underbrace{D, {boldsymbol nabla}rho - rho{boldsymbol v}}_{-boldsymbol f}) ,
$$

where $rho$ is a species concentration (in mass transfer), $D$ is the diffusivity, ${boldsymbol v} = v_r {boldsymbol e}_r + v_theta {boldsymbol e}_theta$ is the velocity field, and ${boldsymbol f} = f_r {boldsymbol e}_r + f_theta {boldsymbol e}_theta$ is the flux. The differential operators write
$$
{boldsymbol nabla}rho = partial_rrho, {boldsymbol e}_r + frac{partial_thetarho}{r}, {boldsymbol e}_theta,
qquadtext{and}qquad
nablacdot {boldsymbol f} = frac{partial_r (r f_r)}{r} + frac{partial_theta f_theta}{r}
$$

with the flux components $f_r = rho v_r - Dpartial_rrho$ and $f_theta = rho v_theta - D partial_thetarho / r$.
If $D$ and $v$ do not depend on space (as seems to be the case here), we have
$$
frac{partial rho}{partial t} = frac{D partial_r (r partial_rrho) - v_r partial_r(rrho)}{r} + frac{D/r, partial_{thetatheta} rho - v_theta partial_thetarho }{r} .
$$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037082%2fmass-transport-equation-cartesian-to-polar-coordinates%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    This is a convection-diffusion equation
    $$
    frac{partial rho}{partial t} = nablacdot(underbrace{D, {boldsymbol nabla}rho - rho{boldsymbol v}}_{-boldsymbol f}) ,
    $$

    where $rho$ is a species concentration (in mass transfer), $D$ is the diffusivity, ${boldsymbol v} = v_r {boldsymbol e}_r + v_theta {boldsymbol e}_theta$ is the velocity field, and ${boldsymbol f} = f_r {boldsymbol e}_r + f_theta {boldsymbol e}_theta$ is the flux. The differential operators write
    $$
    {boldsymbol nabla}rho = partial_rrho, {boldsymbol e}_r + frac{partial_thetarho}{r}, {boldsymbol e}_theta,
    qquadtext{and}qquad
    nablacdot {boldsymbol f} = frac{partial_r (r f_r)}{r} + frac{partial_theta f_theta}{r}
    $$

    with the flux components $f_r = rho v_r - Dpartial_rrho$ and $f_theta = rho v_theta - D partial_thetarho / r$.
    If $D$ and $v$ do not depend on space (as seems to be the case here), we have
    $$
    frac{partial rho}{partial t} = frac{D partial_r (r partial_rrho) - v_r partial_r(rrho)}{r} + frac{D/r, partial_{thetatheta} rho - v_theta partial_thetarho }{r} .
    $$






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      This is a convection-diffusion equation
      $$
      frac{partial rho}{partial t} = nablacdot(underbrace{D, {boldsymbol nabla}rho - rho{boldsymbol v}}_{-boldsymbol f}) ,
      $$

      where $rho$ is a species concentration (in mass transfer), $D$ is the diffusivity, ${boldsymbol v} = v_r {boldsymbol e}_r + v_theta {boldsymbol e}_theta$ is the velocity field, and ${boldsymbol f} = f_r {boldsymbol e}_r + f_theta {boldsymbol e}_theta$ is the flux. The differential operators write
      $$
      {boldsymbol nabla}rho = partial_rrho, {boldsymbol e}_r + frac{partial_thetarho}{r}, {boldsymbol e}_theta,
      qquadtext{and}qquad
      nablacdot {boldsymbol f} = frac{partial_r (r f_r)}{r} + frac{partial_theta f_theta}{r}
      $$

      with the flux components $f_r = rho v_r - Dpartial_rrho$ and $f_theta = rho v_theta - D partial_thetarho / r$.
      If $D$ and $v$ do not depend on space (as seems to be the case here), we have
      $$
      frac{partial rho}{partial t} = frac{D partial_r (r partial_rrho) - v_r partial_r(rrho)}{r} + frac{D/r, partial_{thetatheta} rho - v_theta partial_thetarho }{r} .
      $$






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        This is a convection-diffusion equation
        $$
        frac{partial rho}{partial t} = nablacdot(underbrace{D, {boldsymbol nabla}rho - rho{boldsymbol v}}_{-boldsymbol f}) ,
        $$

        where $rho$ is a species concentration (in mass transfer), $D$ is the diffusivity, ${boldsymbol v} = v_r {boldsymbol e}_r + v_theta {boldsymbol e}_theta$ is the velocity field, and ${boldsymbol f} = f_r {boldsymbol e}_r + f_theta {boldsymbol e}_theta$ is the flux. The differential operators write
        $$
        {boldsymbol nabla}rho = partial_rrho, {boldsymbol e}_r + frac{partial_thetarho}{r}, {boldsymbol e}_theta,
        qquadtext{and}qquad
        nablacdot {boldsymbol f} = frac{partial_r (r f_r)}{r} + frac{partial_theta f_theta}{r}
        $$

        with the flux components $f_r = rho v_r - Dpartial_rrho$ and $f_theta = rho v_theta - D partial_thetarho / r$.
        If $D$ and $v$ do not depend on space (as seems to be the case here), we have
        $$
        frac{partial rho}{partial t} = frac{D partial_r (r partial_rrho) - v_r partial_r(rrho)}{r} + frac{D/r, partial_{thetatheta} rho - v_theta partial_thetarho }{r} .
        $$






        share|cite|improve this answer











        $endgroup$



        This is a convection-diffusion equation
        $$
        frac{partial rho}{partial t} = nablacdot(underbrace{D, {boldsymbol nabla}rho - rho{boldsymbol v}}_{-boldsymbol f}) ,
        $$

        where $rho$ is a species concentration (in mass transfer), $D$ is the diffusivity, ${boldsymbol v} = v_r {boldsymbol e}_r + v_theta {boldsymbol e}_theta$ is the velocity field, and ${boldsymbol f} = f_r {boldsymbol e}_r + f_theta {boldsymbol e}_theta$ is the flux. The differential operators write
        $$
        {boldsymbol nabla}rho = partial_rrho, {boldsymbol e}_r + frac{partial_thetarho}{r}, {boldsymbol e}_theta,
        qquadtext{and}qquad
        nablacdot {boldsymbol f} = frac{partial_r (r f_r)}{r} + frac{partial_theta f_theta}{r}
        $$

        with the flux components $f_r = rho v_r - Dpartial_rrho$ and $f_theta = rho v_theta - D partial_thetarho / r$.
        If $D$ and $v$ do not depend on space (as seems to be the case here), we have
        $$
        frac{partial rho}{partial t} = frac{D partial_r (r partial_rrho) - v_r partial_r(rrho)}{r} + frac{D/r, partial_{thetatheta} rho - v_theta partial_thetarho }{r} .
        $$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 13 '18 at 11:14

























        answered Dec 13 '18 at 10:53









        Harry49Harry49

        7,44431340




        7,44431340






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037082%2fmass-transport-equation-cartesian-to-polar-coordinates%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            Puebla de Zaragoza

            Musa