let $f(x) = tan ^{-1}x, x in mathbb{R} $ .then choose the correct statement
$begingroup$
let $f(x) = tan ^{-1}x, x in mathbb{R} $ .then
choose the correct statement
$1.$ there exist a polynomial $p(x)$ satisfying $p(x)f'(x) =1$ for all $x$
$2.$$f^{(n)}(0) =0$ for all positive even integer $n$
$3.$ the sequence ${f^{(n)} (0) }$ is unbounded
$4.$$f^{(n)} (0) =0$ for all $n$
My attempt : if $ x =0$ ,then obviously $f(x) =0$ because $tan 0 =0$
from this i see option $2)$ and option $4)$ will correct
other option i don't know...
Any hints/solution will be apprecaited
thanks u
real-analysis
$endgroup$
add a comment |
$begingroup$
let $f(x) = tan ^{-1}x, x in mathbb{R} $ .then
choose the correct statement
$1.$ there exist a polynomial $p(x)$ satisfying $p(x)f'(x) =1$ for all $x$
$2.$$f^{(n)}(0) =0$ for all positive even integer $n$
$3.$ the sequence ${f^{(n)} (0) }$ is unbounded
$4.$$f^{(n)} (0) =0$ for all $n$
My attempt : if $ x =0$ ,then obviously $f(x) =0$ because $tan 0 =0$
from this i see option $2)$ and option $4)$ will correct
other option i don't know...
Any hints/solution will be apprecaited
thanks u
real-analysis
$endgroup$
1
$begingroup$
For $(2)$ and $(4)$, I think you misunderstood $f^{(n)}(0)$ as $(f(0))^n; f^{(n)}(0)$ means the $n^{th}$ derivative of $f$ at $x=0$.
$endgroup$
– Shubham Johri
Dec 12 '18 at 20:45
$begingroup$
thanks @ShubhamJohri...
$endgroup$
– jasmine
Dec 12 '18 at 20:53
add a comment |
$begingroup$
let $f(x) = tan ^{-1}x, x in mathbb{R} $ .then
choose the correct statement
$1.$ there exist a polynomial $p(x)$ satisfying $p(x)f'(x) =1$ for all $x$
$2.$$f^{(n)}(0) =0$ for all positive even integer $n$
$3.$ the sequence ${f^{(n)} (0) }$ is unbounded
$4.$$f^{(n)} (0) =0$ for all $n$
My attempt : if $ x =0$ ,then obviously $f(x) =0$ because $tan 0 =0$
from this i see option $2)$ and option $4)$ will correct
other option i don't know...
Any hints/solution will be apprecaited
thanks u
real-analysis
$endgroup$
let $f(x) = tan ^{-1}x, x in mathbb{R} $ .then
choose the correct statement
$1.$ there exist a polynomial $p(x)$ satisfying $p(x)f'(x) =1$ for all $x$
$2.$$f^{(n)}(0) =0$ for all positive even integer $n$
$3.$ the sequence ${f^{(n)} (0) }$ is unbounded
$4.$$f^{(n)} (0) =0$ for all $n$
My attempt : if $ x =0$ ,then obviously $f(x) =0$ because $tan 0 =0$
from this i see option $2)$ and option $4)$ will correct
other option i don't know...
Any hints/solution will be apprecaited
thanks u
real-analysis
real-analysis
asked Dec 12 '18 at 19:51
jasminejasmine
1,791418
1,791418
1
$begingroup$
For $(2)$ and $(4)$, I think you misunderstood $f^{(n)}(0)$ as $(f(0))^n; f^{(n)}(0)$ means the $n^{th}$ derivative of $f$ at $x=0$.
$endgroup$
– Shubham Johri
Dec 12 '18 at 20:45
$begingroup$
thanks @ShubhamJohri...
$endgroup$
– jasmine
Dec 12 '18 at 20:53
add a comment |
1
$begingroup$
For $(2)$ and $(4)$, I think you misunderstood $f^{(n)}(0)$ as $(f(0))^n; f^{(n)}(0)$ means the $n^{th}$ derivative of $f$ at $x=0$.
$endgroup$
– Shubham Johri
Dec 12 '18 at 20:45
$begingroup$
thanks @ShubhamJohri...
$endgroup$
– jasmine
Dec 12 '18 at 20:53
1
1
$begingroup$
For $(2)$ and $(4)$, I think you misunderstood $f^{(n)}(0)$ as $(f(0))^n; f^{(n)}(0)$ means the $n^{th}$ derivative of $f$ at $x=0$.
$endgroup$
– Shubham Johri
Dec 12 '18 at 20:45
$begingroup$
For $(2)$ and $(4)$, I think you misunderstood $f^{(n)}(0)$ as $(f(0))^n; f^{(n)}(0)$ means the $n^{th}$ derivative of $f$ at $x=0$.
$endgroup$
– Shubham Johri
Dec 12 '18 at 20:45
$begingroup$
thanks @ShubhamJohri...
$endgroup$
– jasmine
Dec 12 '18 at 20:53
$begingroup$
thanks @ShubhamJohri...
$endgroup$
– jasmine
Dec 12 '18 at 20:53
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Yes to 1, viz. $p=1+x^2$. Yes to 2, because $f$, like $tan x$, is odd and infinitely differentiable. But 4 is false, viz. e.g. $n=1$. As for 3, note that $f=x-x^3/3+x^5/5-cdots$, so the odd derivaties at $0$ are $(-1)^n(2n)!$, so 3 is true.
$endgroup$
$begingroup$
@J. G im not getting how option 3, 4 false can u elaborate more in detail ???
$endgroup$
– jasmine
Dec 12 '18 at 20:02
$begingroup$
@BarryCipra Sorry; I misread it as restricting to even $n$.
$endgroup$
– J.G.
Dec 12 '18 at 20:05
$begingroup$
THanks u @JG ..
$endgroup$
– jasmine
Dec 12 '18 at 21:00
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037149%2flet-fx-tan-1x-x-in-mathbbr-then-choose-the-correct-statement%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes to 1, viz. $p=1+x^2$. Yes to 2, because $f$, like $tan x$, is odd and infinitely differentiable. But 4 is false, viz. e.g. $n=1$. As for 3, note that $f=x-x^3/3+x^5/5-cdots$, so the odd derivaties at $0$ are $(-1)^n(2n)!$, so 3 is true.
$endgroup$
$begingroup$
@J. G im not getting how option 3, 4 false can u elaborate more in detail ???
$endgroup$
– jasmine
Dec 12 '18 at 20:02
$begingroup$
@BarryCipra Sorry; I misread it as restricting to even $n$.
$endgroup$
– J.G.
Dec 12 '18 at 20:05
$begingroup$
THanks u @JG ..
$endgroup$
– jasmine
Dec 12 '18 at 21:00
add a comment |
$begingroup$
Yes to 1, viz. $p=1+x^2$. Yes to 2, because $f$, like $tan x$, is odd and infinitely differentiable. But 4 is false, viz. e.g. $n=1$. As for 3, note that $f=x-x^3/3+x^5/5-cdots$, so the odd derivaties at $0$ are $(-1)^n(2n)!$, so 3 is true.
$endgroup$
$begingroup$
@J. G im not getting how option 3, 4 false can u elaborate more in detail ???
$endgroup$
– jasmine
Dec 12 '18 at 20:02
$begingroup$
@BarryCipra Sorry; I misread it as restricting to even $n$.
$endgroup$
– J.G.
Dec 12 '18 at 20:05
$begingroup$
THanks u @JG ..
$endgroup$
– jasmine
Dec 12 '18 at 21:00
add a comment |
$begingroup$
Yes to 1, viz. $p=1+x^2$. Yes to 2, because $f$, like $tan x$, is odd and infinitely differentiable. But 4 is false, viz. e.g. $n=1$. As for 3, note that $f=x-x^3/3+x^5/5-cdots$, so the odd derivaties at $0$ are $(-1)^n(2n)!$, so 3 is true.
$endgroup$
Yes to 1, viz. $p=1+x^2$. Yes to 2, because $f$, like $tan x$, is odd and infinitely differentiable. But 4 is false, viz. e.g. $n=1$. As for 3, note that $f=x-x^3/3+x^5/5-cdots$, so the odd derivaties at $0$ are $(-1)^n(2n)!$, so 3 is true.
edited Dec 12 '18 at 20:05
answered Dec 12 '18 at 19:59
J.G.J.G.
28k22844
28k22844
$begingroup$
@J. G im not getting how option 3, 4 false can u elaborate more in detail ???
$endgroup$
– jasmine
Dec 12 '18 at 20:02
$begingroup$
@BarryCipra Sorry; I misread it as restricting to even $n$.
$endgroup$
– J.G.
Dec 12 '18 at 20:05
$begingroup$
THanks u @JG ..
$endgroup$
– jasmine
Dec 12 '18 at 21:00
add a comment |
$begingroup$
@J. G im not getting how option 3, 4 false can u elaborate more in detail ???
$endgroup$
– jasmine
Dec 12 '18 at 20:02
$begingroup$
@BarryCipra Sorry; I misread it as restricting to even $n$.
$endgroup$
– J.G.
Dec 12 '18 at 20:05
$begingroup$
THanks u @JG ..
$endgroup$
– jasmine
Dec 12 '18 at 21:00
$begingroup$
@J. G im not getting how option 3, 4 false can u elaborate more in detail ???
$endgroup$
– jasmine
Dec 12 '18 at 20:02
$begingroup$
@J. G im not getting how option 3, 4 false can u elaborate more in detail ???
$endgroup$
– jasmine
Dec 12 '18 at 20:02
$begingroup$
@BarryCipra Sorry; I misread it as restricting to even $n$.
$endgroup$
– J.G.
Dec 12 '18 at 20:05
$begingroup$
@BarryCipra Sorry; I misread it as restricting to even $n$.
$endgroup$
– J.G.
Dec 12 '18 at 20:05
$begingroup$
THanks u @JG ..
$endgroup$
– jasmine
Dec 12 '18 at 21:00
$begingroup$
THanks u @JG ..
$endgroup$
– jasmine
Dec 12 '18 at 21:00
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037149%2flet-fx-tan-1x-x-in-mathbbr-then-choose-the-correct-statement%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
For $(2)$ and $(4)$, I think you misunderstood $f^{(n)}(0)$ as $(f(0))^n; f^{(n)}(0)$ means the $n^{th}$ derivative of $f$ at $x=0$.
$endgroup$
– Shubham Johri
Dec 12 '18 at 20:45
$begingroup$
thanks @ShubhamJohri...
$endgroup$
– jasmine
Dec 12 '18 at 20:53