Evaluate:$frac{1}{2^{101}}sum_{k=1}^{51} sum_{r=0}^{k-1}binom{51}{k}binom{50}{r}$
$begingroup$
Evaluate:$$frac{1}{2^{101}}sum_{k=1}^{51} sum_{r=0}^{k-1}binom{51}{k}binom{50}{r}$$
My Attempt:
I did try writing the series $(1+x)^{50}$and $(1+x)^{50}$ separately,then multiplied but could not determine the power of $x$ whose coefficient should be found.Can Vandermonde's Identity be put to use here.
binomial-coefficients binomial-theorem binomial-distribution
$endgroup$
add a comment |
$begingroup$
Evaluate:$$frac{1}{2^{101}}sum_{k=1}^{51} sum_{r=0}^{k-1}binom{51}{k}binom{50}{r}$$
My Attempt:
I did try writing the series $(1+x)^{50}$and $(1+x)^{50}$ separately,then multiplied but could not determine the power of $x$ whose coefficient should be found.Can Vandermonde's Identity be put to use here.
binomial-coefficients binomial-theorem binomial-distribution
$endgroup$
add a comment |
$begingroup$
Evaluate:$$frac{1}{2^{101}}sum_{k=1}^{51} sum_{r=0}^{k-1}binom{51}{k}binom{50}{r}$$
My Attempt:
I did try writing the series $(1+x)^{50}$and $(1+x)^{50}$ separately,then multiplied but could not determine the power of $x$ whose coefficient should be found.Can Vandermonde's Identity be put to use here.
binomial-coefficients binomial-theorem binomial-distribution
$endgroup$
Evaluate:$$frac{1}{2^{101}}sum_{k=1}^{51} sum_{r=0}^{k-1}binom{51}{k}binom{50}{r}$$
My Attempt:
I did try writing the series $(1+x)^{50}$and $(1+x)^{50}$ separately,then multiplied but could not determine the power of $x$ whose coefficient should be found.Can Vandermonde's Identity be put to use here.
binomial-coefficients binomial-theorem binomial-distribution
binomial-coefficients binomial-theorem binomial-distribution
asked Dec 16 '18 at 5:39
MaverickMaverick
2,101621
2,101621
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Using the identity $$
binom{51}{k}=binom{50}{k}+binom{50}{k-1},
$$ we get
$$
sum_{k=1}^{51} sum_{r=0}^{k-1}binom{51}{k}binom{50}{r}=sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k}binom{50}{r}+sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k-1}binom{50}{r}.$$ Observe that the former is equal to
$$
sum_{k=0}^{50} sum_{r=0}^{k-1}binom{50}{k}binom{50}{r}= sum_{ 0leq r<kleq 50}binom{50}{k}binom{50}{r} = sum_{ 0leq k<rleq 50}binom{50}{k}binom{50}{r}=sum_{k=0}^{50} sum_{r=k+1}^{50}binom{50}{k}binom{50}{r}.
$$ Also note that the latter is equal to
$$begin{eqnarray}
sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k-1}binom{50}{r}=sum_{k=0}^{50}sum_{r=0}^{k}binom{50}{k}binom{50}{r}.
end{eqnarray}$$ Gathering them together yields
$$
sum_{k=0}^{50} sum_{r=k+1}^{50}binom{50}{k}binom{50}{r}+sum_{k=0}^{50}sum_{r=0}^{k}binom{50}{k}binom{50}{r}=sum_{k=0}^{50} sum_{r=0}^{50}binom{50}{k}binom{50}{r} = 2^{50}cdot2^{50} = 2^{100}.
$$ Hence the answer is $frac{1}{2}$.
$endgroup$
add a comment |
$begingroup$
Here's an alternative solution.
Observe
begin{align}
S=& sum^{51}_{k=1}sum^{k-1}_{r=0}binom{51}{k}binom{50}{r} = sum^{51}_{k=1}sum^{k-1}_{r=0}binom{51}{51-k}binom{50}{50-r}\
=& sum^{50}_{k'=0} sum^{50}_{r'=k'}binom{51}{k'}binom{50}{r'} = sum^{51}_{k'=0} sum^{50}_{r'=k'}binom{51}{k'}binom{50}{r'}.
end{align}
Hence it follows
begin{align}
2S= sum^{51}_{k=0}sum_{r=0}^{50}binom{51}{k}binom{50}{r}= sum^{51}_{k=0}binom{51}{k}sum_{r=0}^{50}binom{50}{r}=2^{51}cdot 2^{50}
end{align}
which means
begin{align}
S = 2^{100}.
end{align}
Hence you arrive at $S/2^{101} = 1/2$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042276%2fevaluate-frac12101-sum-k-151-sum-r-0k-1-binom51k-binom5%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Using the identity $$
binom{51}{k}=binom{50}{k}+binom{50}{k-1},
$$ we get
$$
sum_{k=1}^{51} sum_{r=0}^{k-1}binom{51}{k}binom{50}{r}=sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k}binom{50}{r}+sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k-1}binom{50}{r}.$$ Observe that the former is equal to
$$
sum_{k=0}^{50} sum_{r=0}^{k-1}binom{50}{k}binom{50}{r}= sum_{ 0leq r<kleq 50}binom{50}{k}binom{50}{r} = sum_{ 0leq k<rleq 50}binom{50}{k}binom{50}{r}=sum_{k=0}^{50} sum_{r=k+1}^{50}binom{50}{k}binom{50}{r}.
$$ Also note that the latter is equal to
$$begin{eqnarray}
sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k-1}binom{50}{r}=sum_{k=0}^{50}sum_{r=0}^{k}binom{50}{k}binom{50}{r}.
end{eqnarray}$$ Gathering them together yields
$$
sum_{k=0}^{50} sum_{r=k+1}^{50}binom{50}{k}binom{50}{r}+sum_{k=0}^{50}sum_{r=0}^{k}binom{50}{k}binom{50}{r}=sum_{k=0}^{50} sum_{r=0}^{50}binom{50}{k}binom{50}{r} = 2^{50}cdot2^{50} = 2^{100}.
$$ Hence the answer is $frac{1}{2}$.
$endgroup$
add a comment |
$begingroup$
Using the identity $$
binom{51}{k}=binom{50}{k}+binom{50}{k-1},
$$ we get
$$
sum_{k=1}^{51} sum_{r=0}^{k-1}binom{51}{k}binom{50}{r}=sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k}binom{50}{r}+sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k-1}binom{50}{r}.$$ Observe that the former is equal to
$$
sum_{k=0}^{50} sum_{r=0}^{k-1}binom{50}{k}binom{50}{r}= sum_{ 0leq r<kleq 50}binom{50}{k}binom{50}{r} = sum_{ 0leq k<rleq 50}binom{50}{k}binom{50}{r}=sum_{k=0}^{50} sum_{r=k+1}^{50}binom{50}{k}binom{50}{r}.
$$ Also note that the latter is equal to
$$begin{eqnarray}
sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k-1}binom{50}{r}=sum_{k=0}^{50}sum_{r=0}^{k}binom{50}{k}binom{50}{r}.
end{eqnarray}$$ Gathering them together yields
$$
sum_{k=0}^{50} sum_{r=k+1}^{50}binom{50}{k}binom{50}{r}+sum_{k=0}^{50}sum_{r=0}^{k}binom{50}{k}binom{50}{r}=sum_{k=0}^{50} sum_{r=0}^{50}binom{50}{k}binom{50}{r} = 2^{50}cdot2^{50} = 2^{100}.
$$ Hence the answer is $frac{1}{2}$.
$endgroup$
add a comment |
$begingroup$
Using the identity $$
binom{51}{k}=binom{50}{k}+binom{50}{k-1},
$$ we get
$$
sum_{k=1}^{51} sum_{r=0}^{k-1}binom{51}{k}binom{50}{r}=sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k}binom{50}{r}+sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k-1}binom{50}{r}.$$ Observe that the former is equal to
$$
sum_{k=0}^{50} sum_{r=0}^{k-1}binom{50}{k}binom{50}{r}= sum_{ 0leq r<kleq 50}binom{50}{k}binom{50}{r} = sum_{ 0leq k<rleq 50}binom{50}{k}binom{50}{r}=sum_{k=0}^{50} sum_{r=k+1}^{50}binom{50}{k}binom{50}{r}.
$$ Also note that the latter is equal to
$$begin{eqnarray}
sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k-1}binom{50}{r}=sum_{k=0}^{50}sum_{r=0}^{k}binom{50}{k}binom{50}{r}.
end{eqnarray}$$ Gathering them together yields
$$
sum_{k=0}^{50} sum_{r=k+1}^{50}binom{50}{k}binom{50}{r}+sum_{k=0}^{50}sum_{r=0}^{k}binom{50}{k}binom{50}{r}=sum_{k=0}^{50} sum_{r=0}^{50}binom{50}{k}binom{50}{r} = 2^{50}cdot2^{50} = 2^{100}.
$$ Hence the answer is $frac{1}{2}$.
$endgroup$
Using the identity $$
binom{51}{k}=binom{50}{k}+binom{50}{k-1},
$$ we get
$$
sum_{k=1}^{51} sum_{r=0}^{k-1}binom{51}{k}binom{50}{r}=sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k}binom{50}{r}+sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k-1}binom{50}{r}.$$ Observe that the former is equal to
$$
sum_{k=0}^{50} sum_{r=0}^{k-1}binom{50}{k}binom{50}{r}= sum_{ 0leq r<kleq 50}binom{50}{k}binom{50}{r} = sum_{ 0leq k<rleq 50}binom{50}{k}binom{50}{r}=sum_{k=0}^{50} sum_{r=k+1}^{50}binom{50}{k}binom{50}{r}.
$$ Also note that the latter is equal to
$$begin{eqnarray}
sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k-1}binom{50}{r}=sum_{k=0}^{50}sum_{r=0}^{k}binom{50}{k}binom{50}{r}.
end{eqnarray}$$ Gathering them together yields
$$
sum_{k=0}^{50} sum_{r=k+1}^{50}binom{50}{k}binom{50}{r}+sum_{k=0}^{50}sum_{r=0}^{k}binom{50}{k}binom{50}{r}=sum_{k=0}^{50} sum_{r=0}^{50}binom{50}{k}binom{50}{r} = 2^{50}cdot2^{50} = 2^{100}.
$$ Hence the answer is $frac{1}{2}$.
answered Dec 16 '18 at 6:41
SongSong
16.8k21145
16.8k21145
add a comment |
add a comment |
$begingroup$
Here's an alternative solution.
Observe
begin{align}
S=& sum^{51}_{k=1}sum^{k-1}_{r=0}binom{51}{k}binom{50}{r} = sum^{51}_{k=1}sum^{k-1}_{r=0}binom{51}{51-k}binom{50}{50-r}\
=& sum^{50}_{k'=0} sum^{50}_{r'=k'}binom{51}{k'}binom{50}{r'} = sum^{51}_{k'=0} sum^{50}_{r'=k'}binom{51}{k'}binom{50}{r'}.
end{align}
Hence it follows
begin{align}
2S= sum^{51}_{k=0}sum_{r=0}^{50}binom{51}{k}binom{50}{r}= sum^{51}_{k=0}binom{51}{k}sum_{r=0}^{50}binom{50}{r}=2^{51}cdot 2^{50}
end{align}
which means
begin{align}
S = 2^{100}.
end{align}
Hence you arrive at $S/2^{101} = 1/2$.
$endgroup$
add a comment |
$begingroup$
Here's an alternative solution.
Observe
begin{align}
S=& sum^{51}_{k=1}sum^{k-1}_{r=0}binom{51}{k}binom{50}{r} = sum^{51}_{k=1}sum^{k-1}_{r=0}binom{51}{51-k}binom{50}{50-r}\
=& sum^{50}_{k'=0} sum^{50}_{r'=k'}binom{51}{k'}binom{50}{r'} = sum^{51}_{k'=0} sum^{50}_{r'=k'}binom{51}{k'}binom{50}{r'}.
end{align}
Hence it follows
begin{align}
2S= sum^{51}_{k=0}sum_{r=0}^{50}binom{51}{k}binom{50}{r}= sum^{51}_{k=0}binom{51}{k}sum_{r=0}^{50}binom{50}{r}=2^{51}cdot 2^{50}
end{align}
which means
begin{align}
S = 2^{100}.
end{align}
Hence you arrive at $S/2^{101} = 1/2$.
$endgroup$
add a comment |
$begingroup$
Here's an alternative solution.
Observe
begin{align}
S=& sum^{51}_{k=1}sum^{k-1}_{r=0}binom{51}{k}binom{50}{r} = sum^{51}_{k=1}sum^{k-1}_{r=0}binom{51}{51-k}binom{50}{50-r}\
=& sum^{50}_{k'=0} sum^{50}_{r'=k'}binom{51}{k'}binom{50}{r'} = sum^{51}_{k'=0} sum^{50}_{r'=k'}binom{51}{k'}binom{50}{r'}.
end{align}
Hence it follows
begin{align}
2S= sum^{51}_{k=0}sum_{r=0}^{50}binom{51}{k}binom{50}{r}= sum^{51}_{k=0}binom{51}{k}sum_{r=0}^{50}binom{50}{r}=2^{51}cdot 2^{50}
end{align}
which means
begin{align}
S = 2^{100}.
end{align}
Hence you arrive at $S/2^{101} = 1/2$.
$endgroup$
Here's an alternative solution.
Observe
begin{align}
S=& sum^{51}_{k=1}sum^{k-1}_{r=0}binom{51}{k}binom{50}{r} = sum^{51}_{k=1}sum^{k-1}_{r=0}binom{51}{51-k}binom{50}{50-r}\
=& sum^{50}_{k'=0} sum^{50}_{r'=k'}binom{51}{k'}binom{50}{r'} = sum^{51}_{k'=0} sum^{50}_{r'=k'}binom{51}{k'}binom{50}{r'}.
end{align}
Hence it follows
begin{align}
2S= sum^{51}_{k=0}sum_{r=0}^{50}binom{51}{k}binom{50}{r}= sum^{51}_{k=0}binom{51}{k}sum_{r=0}^{50}binom{50}{r}=2^{51}cdot 2^{50}
end{align}
which means
begin{align}
S = 2^{100}.
end{align}
Hence you arrive at $S/2^{101} = 1/2$.
answered Dec 16 '18 at 7:06
Jacky ChongJacky Chong
19.1k21129
19.1k21129
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042276%2fevaluate-frac12101-sum-k-151-sum-r-0k-1-binom51k-binom5%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown