Evaluate:$frac{1}{2^{101}}sum_{k=1}^{51} sum_{r=0}^{k-1}binom{51}{k}binom{50}{r}$












3












$begingroup$


Evaluate:$$frac{1}{2^{101}}sum_{k=1}^{51} sum_{r=0}^{k-1}binom{51}{k}binom{50}{r}$$
My Attempt:



I did try writing the series $(1+x)^{50}$and $(1+x)^{50}$ separately,then multiplied but could not determine the power of $x$ whose coefficient should be found.Can Vandermonde's Identity be put to use here.










share|cite|improve this question









$endgroup$

















    3












    $begingroup$


    Evaluate:$$frac{1}{2^{101}}sum_{k=1}^{51} sum_{r=0}^{k-1}binom{51}{k}binom{50}{r}$$
    My Attempt:



    I did try writing the series $(1+x)^{50}$and $(1+x)^{50}$ separately,then multiplied but could not determine the power of $x$ whose coefficient should be found.Can Vandermonde's Identity be put to use here.










    share|cite|improve this question









    $endgroup$















      3












      3








      3


      0



      $begingroup$


      Evaluate:$$frac{1}{2^{101}}sum_{k=1}^{51} sum_{r=0}^{k-1}binom{51}{k}binom{50}{r}$$
      My Attempt:



      I did try writing the series $(1+x)^{50}$and $(1+x)^{50}$ separately,then multiplied but could not determine the power of $x$ whose coefficient should be found.Can Vandermonde's Identity be put to use here.










      share|cite|improve this question









      $endgroup$




      Evaluate:$$frac{1}{2^{101}}sum_{k=1}^{51} sum_{r=0}^{k-1}binom{51}{k}binom{50}{r}$$
      My Attempt:



      I did try writing the series $(1+x)^{50}$and $(1+x)^{50}$ separately,then multiplied but could not determine the power of $x$ whose coefficient should be found.Can Vandermonde's Identity be put to use here.







      binomial-coefficients binomial-theorem binomial-distribution






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 16 '18 at 5:39









      MaverickMaverick

      2,101621




      2,101621






















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          Using the identity $$
          binom{51}{k}=binom{50}{k}+binom{50}{k-1},
          $$
          we get
          $$
          sum_{k=1}^{51} sum_{r=0}^{k-1}binom{51}{k}binom{50}{r}=sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k}binom{50}{r}+sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k-1}binom{50}{r}.$$
          Observe that the former is equal to
          $$
          sum_{k=0}^{50} sum_{r=0}^{k-1}binom{50}{k}binom{50}{r}= sum_{ 0leq r<kleq 50}binom{50}{k}binom{50}{r} = sum_{ 0leq k<rleq 50}binom{50}{k}binom{50}{r}=sum_{k=0}^{50} sum_{r=k+1}^{50}binom{50}{k}binom{50}{r}.
          $$
          Also note that the latter is equal to
          $$begin{eqnarray}
          sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k-1}binom{50}{r}=sum_{k=0}^{50}sum_{r=0}^{k}binom{50}{k}binom{50}{r}.
          end{eqnarray}$$
          Gathering them together yields
          $$
          sum_{k=0}^{50} sum_{r=k+1}^{50}binom{50}{k}binom{50}{r}+sum_{k=0}^{50}sum_{r=0}^{k}binom{50}{k}binom{50}{r}=sum_{k=0}^{50} sum_{r=0}^{50}binom{50}{k}binom{50}{r} = 2^{50}cdot2^{50} = 2^{100}.
          $$
          Hence the answer is $frac{1}{2}$.






          share|cite|improve this answer









          $endgroup$





















            2












            $begingroup$

            Here's an alternative solution.



            Observe
            begin{align}
            S=& sum^{51}_{k=1}sum^{k-1}_{r=0}binom{51}{k}binom{50}{r} = sum^{51}_{k=1}sum^{k-1}_{r=0}binom{51}{51-k}binom{50}{50-r}\
            =& sum^{50}_{k'=0} sum^{50}_{r'=k'}binom{51}{k'}binom{50}{r'} = sum^{51}_{k'=0} sum^{50}_{r'=k'}binom{51}{k'}binom{50}{r'}.
            end{align}

            Hence it follows
            begin{align}
            2S= sum^{51}_{k=0}sum_{r=0}^{50}binom{51}{k}binom{50}{r}= sum^{51}_{k=0}binom{51}{k}sum_{r=0}^{50}binom{50}{r}=2^{51}cdot 2^{50}
            end{align}

            which means
            begin{align}
            S = 2^{100}.
            end{align}

            Hence you arrive at $S/2^{101} = 1/2$.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042276%2fevaluate-frac12101-sum-k-151-sum-r-0k-1-binom51k-binom5%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              Using the identity $$
              binom{51}{k}=binom{50}{k}+binom{50}{k-1},
              $$
              we get
              $$
              sum_{k=1}^{51} sum_{r=0}^{k-1}binom{51}{k}binom{50}{r}=sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k}binom{50}{r}+sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k-1}binom{50}{r}.$$
              Observe that the former is equal to
              $$
              sum_{k=0}^{50} sum_{r=0}^{k-1}binom{50}{k}binom{50}{r}= sum_{ 0leq r<kleq 50}binom{50}{k}binom{50}{r} = sum_{ 0leq k<rleq 50}binom{50}{k}binom{50}{r}=sum_{k=0}^{50} sum_{r=k+1}^{50}binom{50}{k}binom{50}{r}.
              $$
              Also note that the latter is equal to
              $$begin{eqnarray}
              sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k-1}binom{50}{r}=sum_{k=0}^{50}sum_{r=0}^{k}binom{50}{k}binom{50}{r}.
              end{eqnarray}$$
              Gathering them together yields
              $$
              sum_{k=0}^{50} sum_{r=k+1}^{50}binom{50}{k}binom{50}{r}+sum_{k=0}^{50}sum_{r=0}^{k}binom{50}{k}binom{50}{r}=sum_{k=0}^{50} sum_{r=0}^{50}binom{50}{k}binom{50}{r} = 2^{50}cdot2^{50} = 2^{100}.
              $$
              Hence the answer is $frac{1}{2}$.






              share|cite|improve this answer









              $endgroup$


















                3












                $begingroup$

                Using the identity $$
                binom{51}{k}=binom{50}{k}+binom{50}{k-1},
                $$
                we get
                $$
                sum_{k=1}^{51} sum_{r=0}^{k-1}binom{51}{k}binom{50}{r}=sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k}binom{50}{r}+sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k-1}binom{50}{r}.$$
                Observe that the former is equal to
                $$
                sum_{k=0}^{50} sum_{r=0}^{k-1}binom{50}{k}binom{50}{r}= sum_{ 0leq r<kleq 50}binom{50}{k}binom{50}{r} = sum_{ 0leq k<rleq 50}binom{50}{k}binom{50}{r}=sum_{k=0}^{50} sum_{r=k+1}^{50}binom{50}{k}binom{50}{r}.
                $$
                Also note that the latter is equal to
                $$begin{eqnarray}
                sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k-1}binom{50}{r}=sum_{k=0}^{50}sum_{r=0}^{k}binom{50}{k}binom{50}{r}.
                end{eqnarray}$$
                Gathering them together yields
                $$
                sum_{k=0}^{50} sum_{r=k+1}^{50}binom{50}{k}binom{50}{r}+sum_{k=0}^{50}sum_{r=0}^{k}binom{50}{k}binom{50}{r}=sum_{k=0}^{50} sum_{r=0}^{50}binom{50}{k}binom{50}{r} = 2^{50}cdot2^{50} = 2^{100}.
                $$
                Hence the answer is $frac{1}{2}$.






                share|cite|improve this answer









                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  Using the identity $$
                  binom{51}{k}=binom{50}{k}+binom{50}{k-1},
                  $$
                  we get
                  $$
                  sum_{k=1}^{51} sum_{r=0}^{k-1}binom{51}{k}binom{50}{r}=sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k}binom{50}{r}+sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k-1}binom{50}{r}.$$
                  Observe that the former is equal to
                  $$
                  sum_{k=0}^{50} sum_{r=0}^{k-1}binom{50}{k}binom{50}{r}= sum_{ 0leq r<kleq 50}binom{50}{k}binom{50}{r} = sum_{ 0leq k<rleq 50}binom{50}{k}binom{50}{r}=sum_{k=0}^{50} sum_{r=k+1}^{50}binom{50}{k}binom{50}{r}.
                  $$
                  Also note that the latter is equal to
                  $$begin{eqnarray}
                  sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k-1}binom{50}{r}=sum_{k=0}^{50}sum_{r=0}^{k}binom{50}{k}binom{50}{r}.
                  end{eqnarray}$$
                  Gathering them together yields
                  $$
                  sum_{k=0}^{50} sum_{r=k+1}^{50}binom{50}{k}binom{50}{r}+sum_{k=0}^{50}sum_{r=0}^{k}binom{50}{k}binom{50}{r}=sum_{k=0}^{50} sum_{r=0}^{50}binom{50}{k}binom{50}{r} = 2^{50}cdot2^{50} = 2^{100}.
                  $$
                  Hence the answer is $frac{1}{2}$.






                  share|cite|improve this answer









                  $endgroup$



                  Using the identity $$
                  binom{51}{k}=binom{50}{k}+binom{50}{k-1},
                  $$
                  we get
                  $$
                  sum_{k=1}^{51} sum_{r=0}^{k-1}binom{51}{k}binom{50}{r}=sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k}binom{50}{r}+sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k-1}binom{50}{r}.$$
                  Observe that the former is equal to
                  $$
                  sum_{k=0}^{50} sum_{r=0}^{k-1}binom{50}{k}binom{50}{r}= sum_{ 0leq r<kleq 50}binom{50}{k}binom{50}{r} = sum_{ 0leq k<rleq 50}binom{50}{k}binom{50}{r}=sum_{k=0}^{50} sum_{r=k+1}^{50}binom{50}{k}binom{50}{r}.
                  $$
                  Also note that the latter is equal to
                  $$begin{eqnarray}
                  sum_{k=1}^{51} sum_{r=0}^{k-1}binom{50}{k-1}binom{50}{r}=sum_{k=0}^{50}sum_{r=0}^{k}binom{50}{k}binom{50}{r}.
                  end{eqnarray}$$
                  Gathering them together yields
                  $$
                  sum_{k=0}^{50} sum_{r=k+1}^{50}binom{50}{k}binom{50}{r}+sum_{k=0}^{50}sum_{r=0}^{k}binom{50}{k}binom{50}{r}=sum_{k=0}^{50} sum_{r=0}^{50}binom{50}{k}binom{50}{r} = 2^{50}cdot2^{50} = 2^{100}.
                  $$
                  Hence the answer is $frac{1}{2}$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 16 '18 at 6:41









                  SongSong

                  16.8k21145




                  16.8k21145























                      2












                      $begingroup$

                      Here's an alternative solution.



                      Observe
                      begin{align}
                      S=& sum^{51}_{k=1}sum^{k-1}_{r=0}binom{51}{k}binom{50}{r} = sum^{51}_{k=1}sum^{k-1}_{r=0}binom{51}{51-k}binom{50}{50-r}\
                      =& sum^{50}_{k'=0} sum^{50}_{r'=k'}binom{51}{k'}binom{50}{r'} = sum^{51}_{k'=0} sum^{50}_{r'=k'}binom{51}{k'}binom{50}{r'}.
                      end{align}

                      Hence it follows
                      begin{align}
                      2S= sum^{51}_{k=0}sum_{r=0}^{50}binom{51}{k}binom{50}{r}= sum^{51}_{k=0}binom{51}{k}sum_{r=0}^{50}binom{50}{r}=2^{51}cdot 2^{50}
                      end{align}

                      which means
                      begin{align}
                      S = 2^{100}.
                      end{align}

                      Hence you arrive at $S/2^{101} = 1/2$.






                      share|cite|improve this answer









                      $endgroup$


















                        2












                        $begingroup$

                        Here's an alternative solution.



                        Observe
                        begin{align}
                        S=& sum^{51}_{k=1}sum^{k-1}_{r=0}binom{51}{k}binom{50}{r} = sum^{51}_{k=1}sum^{k-1}_{r=0}binom{51}{51-k}binom{50}{50-r}\
                        =& sum^{50}_{k'=0} sum^{50}_{r'=k'}binom{51}{k'}binom{50}{r'} = sum^{51}_{k'=0} sum^{50}_{r'=k'}binom{51}{k'}binom{50}{r'}.
                        end{align}

                        Hence it follows
                        begin{align}
                        2S= sum^{51}_{k=0}sum_{r=0}^{50}binom{51}{k}binom{50}{r}= sum^{51}_{k=0}binom{51}{k}sum_{r=0}^{50}binom{50}{r}=2^{51}cdot 2^{50}
                        end{align}

                        which means
                        begin{align}
                        S = 2^{100}.
                        end{align}

                        Hence you arrive at $S/2^{101} = 1/2$.






                        share|cite|improve this answer









                        $endgroup$
















                          2












                          2








                          2





                          $begingroup$

                          Here's an alternative solution.



                          Observe
                          begin{align}
                          S=& sum^{51}_{k=1}sum^{k-1}_{r=0}binom{51}{k}binom{50}{r} = sum^{51}_{k=1}sum^{k-1}_{r=0}binom{51}{51-k}binom{50}{50-r}\
                          =& sum^{50}_{k'=0} sum^{50}_{r'=k'}binom{51}{k'}binom{50}{r'} = sum^{51}_{k'=0} sum^{50}_{r'=k'}binom{51}{k'}binom{50}{r'}.
                          end{align}

                          Hence it follows
                          begin{align}
                          2S= sum^{51}_{k=0}sum_{r=0}^{50}binom{51}{k}binom{50}{r}= sum^{51}_{k=0}binom{51}{k}sum_{r=0}^{50}binom{50}{r}=2^{51}cdot 2^{50}
                          end{align}

                          which means
                          begin{align}
                          S = 2^{100}.
                          end{align}

                          Hence you arrive at $S/2^{101} = 1/2$.






                          share|cite|improve this answer









                          $endgroup$



                          Here's an alternative solution.



                          Observe
                          begin{align}
                          S=& sum^{51}_{k=1}sum^{k-1}_{r=0}binom{51}{k}binom{50}{r} = sum^{51}_{k=1}sum^{k-1}_{r=0}binom{51}{51-k}binom{50}{50-r}\
                          =& sum^{50}_{k'=0} sum^{50}_{r'=k'}binom{51}{k'}binom{50}{r'} = sum^{51}_{k'=0} sum^{50}_{r'=k'}binom{51}{k'}binom{50}{r'}.
                          end{align}

                          Hence it follows
                          begin{align}
                          2S= sum^{51}_{k=0}sum_{r=0}^{50}binom{51}{k}binom{50}{r}= sum^{51}_{k=0}binom{51}{k}sum_{r=0}^{50}binom{50}{r}=2^{51}cdot 2^{50}
                          end{align}

                          which means
                          begin{align}
                          S = 2^{100}.
                          end{align}

                          Hence you arrive at $S/2^{101} = 1/2$.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 16 '18 at 7:06









                          Jacky ChongJacky Chong

                          19.1k21129




                          19.1k21129






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042276%2fevaluate-frac12101-sum-k-151-sum-r-0k-1-binom51k-binom5%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Plaza Victoria

                              Puebla de Zaragoza

                              Musa