Finding a function of two variables satisfying some condtions












0












$begingroup$


I am trying to find a function of two variables $f(x, y): [0, infty) times mathbb{R} to mathbb{R}$, satisfying the following conditions:



(i) $f(0, y) = 1$ for all $y in mathbb{R}$;



(ii) $f(x, y) > 0$ for all $x in (0, infty)$ if $y geq 0$;



(iii) $f(x, y) < 0$ for all $x in (0, infty)$ if $y < 0$;



Does there exist a function f(x, y) which satisfies the conditions (i)-(iii)?



Thank you very much for your support.










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    Your conditions $(i)$ and $(iii)$ are contradictory.
    $endgroup$
    – Song
    Dec 16 '18 at 6:47










  • $begingroup$
    I agree with @Song. Maybe in $(iii)$ you wanted to write $f(x,y) < 0$ for all $x in (0, infty)$ instead of $ [0, infty)$?
    $endgroup$
    – Hermione
    Dec 16 '18 at 12:04












  • $begingroup$
    @Hermione Thanks for your very good response. I have corrected this condition.
    $endgroup$
    – MichaelCarrick
    Dec 16 '18 at 15:32
















0












$begingroup$


I am trying to find a function of two variables $f(x, y): [0, infty) times mathbb{R} to mathbb{R}$, satisfying the following conditions:



(i) $f(0, y) = 1$ for all $y in mathbb{R}$;



(ii) $f(x, y) > 0$ for all $x in (0, infty)$ if $y geq 0$;



(iii) $f(x, y) < 0$ for all $x in (0, infty)$ if $y < 0$;



Does there exist a function f(x, y) which satisfies the conditions (i)-(iii)?



Thank you very much for your support.










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    Your conditions $(i)$ and $(iii)$ are contradictory.
    $endgroup$
    – Song
    Dec 16 '18 at 6:47










  • $begingroup$
    I agree with @Song. Maybe in $(iii)$ you wanted to write $f(x,y) < 0$ for all $x in (0, infty)$ instead of $ [0, infty)$?
    $endgroup$
    – Hermione
    Dec 16 '18 at 12:04












  • $begingroup$
    @Hermione Thanks for your very good response. I have corrected this condition.
    $endgroup$
    – MichaelCarrick
    Dec 16 '18 at 15:32














0












0








0





$begingroup$


I am trying to find a function of two variables $f(x, y): [0, infty) times mathbb{R} to mathbb{R}$, satisfying the following conditions:



(i) $f(0, y) = 1$ for all $y in mathbb{R}$;



(ii) $f(x, y) > 0$ for all $x in (0, infty)$ if $y geq 0$;



(iii) $f(x, y) < 0$ for all $x in (0, infty)$ if $y < 0$;



Does there exist a function f(x, y) which satisfies the conditions (i)-(iii)?



Thank you very much for your support.










share|cite|improve this question











$endgroup$




I am trying to find a function of two variables $f(x, y): [0, infty) times mathbb{R} to mathbb{R}$, satisfying the following conditions:



(i) $f(0, y) = 1$ for all $y in mathbb{R}$;



(ii) $f(x, y) > 0$ for all $x in (0, infty)$ if $y geq 0$;



(iii) $f(x, y) < 0$ for all $x in (0, infty)$ if $y < 0$;



Does there exist a function f(x, y) which satisfies the conditions (i)-(iii)?



Thank you very much for your support.







real-analysis functional-analysis numerical-methods






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 16 '18 at 15:33







MichaelCarrick

















asked Dec 16 '18 at 6:34









MichaelCarrickMichaelCarrick

1097




1097








  • 3




    $begingroup$
    Your conditions $(i)$ and $(iii)$ are contradictory.
    $endgroup$
    – Song
    Dec 16 '18 at 6:47










  • $begingroup$
    I agree with @Song. Maybe in $(iii)$ you wanted to write $f(x,y) < 0$ for all $x in (0, infty)$ instead of $ [0, infty)$?
    $endgroup$
    – Hermione
    Dec 16 '18 at 12:04












  • $begingroup$
    @Hermione Thanks for your very good response. I have corrected this condition.
    $endgroup$
    – MichaelCarrick
    Dec 16 '18 at 15:32














  • 3




    $begingroup$
    Your conditions $(i)$ and $(iii)$ are contradictory.
    $endgroup$
    – Song
    Dec 16 '18 at 6:47










  • $begingroup$
    I agree with @Song. Maybe in $(iii)$ you wanted to write $f(x,y) < 0$ for all $x in (0, infty)$ instead of $ [0, infty)$?
    $endgroup$
    – Hermione
    Dec 16 '18 at 12:04












  • $begingroup$
    @Hermione Thanks for your very good response. I have corrected this condition.
    $endgroup$
    – MichaelCarrick
    Dec 16 '18 at 15:32








3




3




$begingroup$
Your conditions $(i)$ and $(iii)$ are contradictory.
$endgroup$
– Song
Dec 16 '18 at 6:47




$begingroup$
Your conditions $(i)$ and $(iii)$ are contradictory.
$endgroup$
– Song
Dec 16 '18 at 6:47












$begingroup$
I agree with @Song. Maybe in $(iii)$ you wanted to write $f(x,y) < 0$ for all $x in (0, infty)$ instead of $ [0, infty)$?
$endgroup$
– Hermione
Dec 16 '18 at 12:04






$begingroup$
I agree with @Song. Maybe in $(iii)$ you wanted to write $f(x,y) < 0$ for all $x in (0, infty)$ instead of $ [0, infty)$?
$endgroup$
– Hermione
Dec 16 '18 at 12:04














$begingroup$
@Hermione Thanks for your very good response. I have corrected this condition.
$endgroup$
– MichaelCarrick
Dec 16 '18 at 15:32




$begingroup$
@Hermione Thanks for your very good response. I have corrected this condition.
$endgroup$
– MichaelCarrick
Dec 16 '18 at 15:32










2 Answers
2






active

oldest

votes


















0












$begingroup$

You can consider the function $f$ defined as
$$ f (x, y) = 1 quad text{if } x=0 text{ for all } y in mathbb{R}$$
$$ f (x, y) = 1 quad text{if } x>0 text{ and } y geq 0$$
$$ f (x, y) = -1 quad text{if } x>0 text{ and } y < 0$$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    $${1over2}(2operatorname{heavi}(x)-operatorname{krondelta}(x))(2operatorname{heavi}(y)+operatorname{krondelta}(y)-1)+operatorname{krondelta}(x) ,$$where $$operatorname{heavi}$$is the Heaviside function, &$$operatorname{krondelta}$$the Kronecker $delta$ function.



    This could be expressed as a limit of continuous functions: $$lim_{atoinfty}{1over2}(tanh(ax)-exp(-(ax)^2)+1)(tanh(ay)+exp(-(ay)^2)+exp(-(ax)^2) .$$or$$lim_{atoinfty}{1over2}(tanh(ax)-operatorname{sech}(ax)+1)(tanh(ay)+operatorname{sech}(ay))+operatorname{sech}(ax) .$$






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042307%2ffinding-a-function-of-two-variables-satisfying-some-condtions%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      You can consider the function $f$ defined as
      $$ f (x, y) = 1 quad text{if } x=0 text{ for all } y in mathbb{R}$$
      $$ f (x, y) = 1 quad text{if } x>0 text{ and } y geq 0$$
      $$ f (x, y) = -1 quad text{if } x>0 text{ and } y < 0$$






      share|cite|improve this answer









      $endgroup$


















        0












        $begingroup$

        You can consider the function $f$ defined as
        $$ f (x, y) = 1 quad text{if } x=0 text{ for all } y in mathbb{R}$$
        $$ f (x, y) = 1 quad text{if } x>0 text{ and } y geq 0$$
        $$ f (x, y) = -1 quad text{if } x>0 text{ and } y < 0$$






        share|cite|improve this answer









        $endgroup$
















          0












          0








          0





          $begingroup$

          You can consider the function $f$ defined as
          $$ f (x, y) = 1 quad text{if } x=0 text{ for all } y in mathbb{R}$$
          $$ f (x, y) = 1 quad text{if } x>0 text{ and } y geq 0$$
          $$ f (x, y) = -1 quad text{if } x>0 text{ and } y < 0$$






          share|cite|improve this answer









          $endgroup$



          You can consider the function $f$ defined as
          $$ f (x, y) = 1 quad text{if } x=0 text{ for all } y in mathbb{R}$$
          $$ f (x, y) = 1 quad text{if } x>0 text{ and } y geq 0$$
          $$ f (x, y) = -1 quad text{if } x>0 text{ and } y < 0$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 16 '18 at 16:12









          HermioneHermione

          19619




          19619























              1












              $begingroup$

              $${1over2}(2operatorname{heavi}(x)-operatorname{krondelta}(x))(2operatorname{heavi}(y)+operatorname{krondelta}(y)-1)+operatorname{krondelta}(x) ,$$where $$operatorname{heavi}$$is the Heaviside function, &$$operatorname{krondelta}$$the Kronecker $delta$ function.



              This could be expressed as a limit of continuous functions: $$lim_{atoinfty}{1over2}(tanh(ax)-exp(-(ax)^2)+1)(tanh(ay)+exp(-(ay)^2)+exp(-(ax)^2) .$$or$$lim_{atoinfty}{1over2}(tanh(ax)-operatorname{sech}(ax)+1)(tanh(ay)+operatorname{sech}(ay))+operatorname{sech}(ax) .$$






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                $${1over2}(2operatorname{heavi}(x)-operatorname{krondelta}(x))(2operatorname{heavi}(y)+operatorname{krondelta}(y)-1)+operatorname{krondelta}(x) ,$$where $$operatorname{heavi}$$is the Heaviside function, &$$operatorname{krondelta}$$the Kronecker $delta$ function.



                This could be expressed as a limit of continuous functions: $$lim_{atoinfty}{1over2}(tanh(ax)-exp(-(ax)^2)+1)(tanh(ay)+exp(-(ay)^2)+exp(-(ax)^2) .$$or$$lim_{atoinfty}{1over2}(tanh(ax)-operatorname{sech}(ax)+1)(tanh(ay)+operatorname{sech}(ay))+operatorname{sech}(ax) .$$






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  $${1over2}(2operatorname{heavi}(x)-operatorname{krondelta}(x))(2operatorname{heavi}(y)+operatorname{krondelta}(y)-1)+operatorname{krondelta}(x) ,$$where $$operatorname{heavi}$$is the Heaviside function, &$$operatorname{krondelta}$$the Kronecker $delta$ function.



                  This could be expressed as a limit of continuous functions: $$lim_{atoinfty}{1over2}(tanh(ax)-exp(-(ax)^2)+1)(tanh(ay)+exp(-(ay)^2)+exp(-(ax)^2) .$$or$$lim_{atoinfty}{1over2}(tanh(ax)-operatorname{sech}(ax)+1)(tanh(ay)+operatorname{sech}(ay))+operatorname{sech}(ax) .$$






                  share|cite|improve this answer











                  $endgroup$



                  $${1over2}(2operatorname{heavi}(x)-operatorname{krondelta}(x))(2operatorname{heavi}(y)+operatorname{krondelta}(y)-1)+operatorname{krondelta}(x) ,$$where $$operatorname{heavi}$$is the Heaviside function, &$$operatorname{krondelta}$$the Kronecker $delta$ function.



                  This could be expressed as a limit of continuous functions: $$lim_{atoinfty}{1over2}(tanh(ax)-exp(-(ax)^2)+1)(tanh(ay)+exp(-(ay)^2)+exp(-(ax)^2) .$$or$$lim_{atoinfty}{1over2}(tanh(ax)-operatorname{sech}(ax)+1)(tanh(ay)+operatorname{sech}(ay))+operatorname{sech}(ax) .$$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Dec 17 '18 at 2:22

























                  answered Dec 16 '18 at 17:57









                  AmbretteOrriseyAmbretteOrrisey

                  54210




                  54210






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3042307%2ffinding-a-function-of-two-variables-satisfying-some-condtions%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Plaza Victoria

                      Puebla de Zaragoza

                      Musa