Linear transformations - 2 opposite claims, solution attempt included
$begingroup$
Suppose $V, W$ are vector spaces and $ T: V to W $ is a linear transformation.
$v_1, v_2, ... , v_k in V$.
Prove or disprove:
If $span( v_1, v_2, ... , v_k) = V$, then $span(T(v_1), ... , T(v_k) = W$.
If $span(T(v_1), ... , T(v_k)) = W$, then $span( v_1, v_2, ... , v_k) = V$.
My solution goes:
The first claim is false. let $, V, W = mathbb R$, and $ T: mathbb R to mathbb R$. We define $T$ as $T(v) = 0$, and $v_1 = [1]$. Therefore, $span(v_1) =mathbb R$, but $span(T(v_1)) = span(0) neq mathbb R$.
Second claim: We can easily prove that if $(T(v_1),...,T(v_n))$ is linearly independent, then $(v_1,...,v_n)$ is linearly independent as well. Is this enough to conclude that since we know $span(T(v_1), ... , T(v_k)) = W$, then $T(v_1), ... , T(v_k)$ is linearly independent, therefore $ v_1, v_2, ... , v_k$ is linearly independent, and thus $span( v_1, v_2, ... , v_k) = V$?
Thanks in advance!
linear-algebra vector-spaces linear-transformations
$endgroup$
add a comment |
$begingroup$
Suppose $V, W$ are vector spaces and $ T: V to W $ is a linear transformation.
$v_1, v_2, ... , v_k in V$.
Prove or disprove:
If $span( v_1, v_2, ... , v_k) = V$, then $span(T(v_1), ... , T(v_k) = W$.
If $span(T(v_1), ... , T(v_k)) = W$, then $span( v_1, v_2, ... , v_k) = V$.
My solution goes:
The first claim is false. let $, V, W = mathbb R$, and $ T: mathbb R to mathbb R$. We define $T$ as $T(v) = 0$, and $v_1 = [1]$. Therefore, $span(v_1) =mathbb R$, but $span(T(v_1)) = span(0) neq mathbb R$.
Second claim: We can easily prove that if $(T(v_1),...,T(v_n))$ is linearly independent, then $(v_1,...,v_n)$ is linearly independent as well. Is this enough to conclude that since we know $span(T(v_1), ... , T(v_k)) = W$, then $T(v_1), ... , T(v_k)$ is linearly independent, therefore $ v_1, v_2, ... , v_k$ is linearly independent, and thus $span( v_1, v_2, ... , v_k) = V$?
Thanks in advance!
linear-algebra vector-spaces linear-transformations
$endgroup$
$begingroup$
Changed it, the question remains the same. Cant figure out how to prove or disprove the second claim.
$endgroup$
– Tegernako
Dec 13 '18 at 18:04
$begingroup$
What if $dim Vgtdim W$?
$endgroup$
– amd
Dec 13 '18 at 18:16
add a comment |
$begingroup$
Suppose $V, W$ are vector spaces and $ T: V to W $ is a linear transformation.
$v_1, v_2, ... , v_k in V$.
Prove or disprove:
If $span( v_1, v_2, ... , v_k) = V$, then $span(T(v_1), ... , T(v_k) = W$.
If $span(T(v_1), ... , T(v_k)) = W$, then $span( v_1, v_2, ... , v_k) = V$.
My solution goes:
The first claim is false. let $, V, W = mathbb R$, and $ T: mathbb R to mathbb R$. We define $T$ as $T(v) = 0$, and $v_1 = [1]$. Therefore, $span(v_1) =mathbb R$, but $span(T(v_1)) = span(0) neq mathbb R$.
Second claim: We can easily prove that if $(T(v_1),...,T(v_n))$ is linearly independent, then $(v_1,...,v_n)$ is linearly independent as well. Is this enough to conclude that since we know $span(T(v_1), ... , T(v_k)) = W$, then $T(v_1), ... , T(v_k)$ is linearly independent, therefore $ v_1, v_2, ... , v_k$ is linearly independent, and thus $span( v_1, v_2, ... , v_k) = V$?
Thanks in advance!
linear-algebra vector-spaces linear-transformations
$endgroup$
Suppose $V, W$ are vector spaces and $ T: V to W $ is a linear transformation.
$v_1, v_2, ... , v_k in V$.
Prove or disprove:
If $span( v_1, v_2, ... , v_k) = V$, then $span(T(v_1), ... , T(v_k) = W$.
If $span(T(v_1), ... , T(v_k)) = W$, then $span( v_1, v_2, ... , v_k) = V$.
My solution goes:
The first claim is false. let $, V, W = mathbb R$, and $ T: mathbb R to mathbb R$. We define $T$ as $T(v) = 0$, and $v_1 = [1]$. Therefore, $span(v_1) =mathbb R$, but $span(T(v_1)) = span(0) neq mathbb R$.
Second claim: We can easily prove that if $(T(v_1),...,T(v_n))$ is linearly independent, then $(v_1,...,v_n)$ is linearly independent as well. Is this enough to conclude that since we know $span(T(v_1), ... , T(v_k)) = W$, then $T(v_1), ... , T(v_k)$ is linearly independent, therefore $ v_1, v_2, ... , v_k$ is linearly independent, and thus $span( v_1, v_2, ... , v_k) = V$?
Thanks in advance!
linear-algebra vector-spaces linear-transformations
linear-algebra vector-spaces linear-transformations
edited Dec 13 '18 at 18:04
Tegernako
asked Dec 13 '18 at 16:57
TegernakoTegernako
908
908
$begingroup$
Changed it, the question remains the same. Cant figure out how to prove or disprove the second claim.
$endgroup$
– Tegernako
Dec 13 '18 at 18:04
$begingroup$
What if $dim Vgtdim W$?
$endgroup$
– amd
Dec 13 '18 at 18:16
add a comment |
$begingroup$
Changed it, the question remains the same. Cant figure out how to prove or disprove the second claim.
$endgroup$
– Tegernako
Dec 13 '18 at 18:04
$begingroup$
What if $dim Vgtdim W$?
$endgroup$
– amd
Dec 13 '18 at 18:16
$begingroup$
Changed it, the question remains the same. Cant figure out how to prove or disprove the second claim.
$endgroup$
– Tegernako
Dec 13 '18 at 18:04
$begingroup$
Changed it, the question remains the same. Cant figure out how to prove or disprove the second claim.
$endgroup$
– Tegernako
Dec 13 '18 at 18:04
$begingroup$
What if $dim Vgtdim W$?
$endgroup$
– amd
Dec 13 '18 at 18:16
$begingroup$
What if $dim Vgtdim W$?
$endgroup$
– amd
Dec 13 '18 at 18:16
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The first you did great. For the second consider $W={0}$
$endgroup$
$begingroup$
How is this a counter example?
$endgroup$
– Tegernako
Dec 13 '18 at 17:11
$begingroup$
What I mean, if the empty set spans W, what could possibly be my T?
$endgroup$
– Tegernako
Dec 13 '18 at 17:59
1
$begingroup$
@Tegernako: The point is that if $W={mathbf{0}}$ (so your $T$ is the zero map), then any collection $v_1,ldots,v_k$ will satisfy that $mathrm{span}(T(v_1),ldots,T(v_k)) = mathrm{span}(mathbf{0},mathbf{0},ldots,mathbf{0}) = mathrm{span}(mathbf{0}) = {mathbf{0}}=W$. The empty set is not the only set that spans $W$.
$endgroup$
– Arturo Magidin
Dec 13 '18 at 18:12
1
$begingroup$
@Tegernako $T: vmapsto 0$ for all $v$.
$endgroup$
– amd
Dec 13 '18 at 18:17
$begingroup$
I see. Basically every set will satisfy what we have, but not the 'then' part. Thanks a lot, cheers for the weekend!
$endgroup$
– Tegernako
Dec 13 '18 at 18:37
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038284%2flinear-transformations-2-opposite-claims-solution-attempt-included%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The first you did great. For the second consider $W={0}$
$endgroup$
$begingroup$
How is this a counter example?
$endgroup$
– Tegernako
Dec 13 '18 at 17:11
$begingroup$
What I mean, if the empty set spans W, what could possibly be my T?
$endgroup$
– Tegernako
Dec 13 '18 at 17:59
1
$begingroup$
@Tegernako: The point is that if $W={mathbf{0}}$ (so your $T$ is the zero map), then any collection $v_1,ldots,v_k$ will satisfy that $mathrm{span}(T(v_1),ldots,T(v_k)) = mathrm{span}(mathbf{0},mathbf{0},ldots,mathbf{0}) = mathrm{span}(mathbf{0}) = {mathbf{0}}=W$. The empty set is not the only set that spans $W$.
$endgroup$
– Arturo Magidin
Dec 13 '18 at 18:12
1
$begingroup$
@Tegernako $T: vmapsto 0$ for all $v$.
$endgroup$
– amd
Dec 13 '18 at 18:17
$begingroup$
I see. Basically every set will satisfy what we have, but not the 'then' part. Thanks a lot, cheers for the weekend!
$endgroup$
– Tegernako
Dec 13 '18 at 18:37
add a comment |
$begingroup$
The first you did great. For the second consider $W={0}$
$endgroup$
$begingroup$
How is this a counter example?
$endgroup$
– Tegernako
Dec 13 '18 at 17:11
$begingroup$
What I mean, if the empty set spans W, what could possibly be my T?
$endgroup$
– Tegernako
Dec 13 '18 at 17:59
1
$begingroup$
@Tegernako: The point is that if $W={mathbf{0}}$ (so your $T$ is the zero map), then any collection $v_1,ldots,v_k$ will satisfy that $mathrm{span}(T(v_1),ldots,T(v_k)) = mathrm{span}(mathbf{0},mathbf{0},ldots,mathbf{0}) = mathrm{span}(mathbf{0}) = {mathbf{0}}=W$. The empty set is not the only set that spans $W$.
$endgroup$
– Arturo Magidin
Dec 13 '18 at 18:12
1
$begingroup$
@Tegernako $T: vmapsto 0$ for all $v$.
$endgroup$
– amd
Dec 13 '18 at 18:17
$begingroup$
I see. Basically every set will satisfy what we have, but not the 'then' part. Thanks a lot, cheers for the weekend!
$endgroup$
– Tegernako
Dec 13 '18 at 18:37
add a comment |
$begingroup$
The first you did great. For the second consider $W={0}$
$endgroup$
The first you did great. For the second consider $W={0}$
answered Dec 13 '18 at 17:01
YankoYanko
7,3301729
7,3301729
$begingroup$
How is this a counter example?
$endgroup$
– Tegernako
Dec 13 '18 at 17:11
$begingroup$
What I mean, if the empty set spans W, what could possibly be my T?
$endgroup$
– Tegernako
Dec 13 '18 at 17:59
1
$begingroup$
@Tegernako: The point is that if $W={mathbf{0}}$ (so your $T$ is the zero map), then any collection $v_1,ldots,v_k$ will satisfy that $mathrm{span}(T(v_1),ldots,T(v_k)) = mathrm{span}(mathbf{0},mathbf{0},ldots,mathbf{0}) = mathrm{span}(mathbf{0}) = {mathbf{0}}=W$. The empty set is not the only set that spans $W$.
$endgroup$
– Arturo Magidin
Dec 13 '18 at 18:12
1
$begingroup$
@Tegernako $T: vmapsto 0$ for all $v$.
$endgroup$
– amd
Dec 13 '18 at 18:17
$begingroup$
I see. Basically every set will satisfy what we have, but not the 'then' part. Thanks a lot, cheers for the weekend!
$endgroup$
– Tegernako
Dec 13 '18 at 18:37
add a comment |
$begingroup$
How is this a counter example?
$endgroup$
– Tegernako
Dec 13 '18 at 17:11
$begingroup$
What I mean, if the empty set spans W, what could possibly be my T?
$endgroup$
– Tegernako
Dec 13 '18 at 17:59
1
$begingroup$
@Tegernako: The point is that if $W={mathbf{0}}$ (so your $T$ is the zero map), then any collection $v_1,ldots,v_k$ will satisfy that $mathrm{span}(T(v_1),ldots,T(v_k)) = mathrm{span}(mathbf{0},mathbf{0},ldots,mathbf{0}) = mathrm{span}(mathbf{0}) = {mathbf{0}}=W$. The empty set is not the only set that spans $W$.
$endgroup$
– Arturo Magidin
Dec 13 '18 at 18:12
1
$begingroup$
@Tegernako $T: vmapsto 0$ for all $v$.
$endgroup$
– amd
Dec 13 '18 at 18:17
$begingroup$
I see. Basically every set will satisfy what we have, but not the 'then' part. Thanks a lot, cheers for the weekend!
$endgroup$
– Tegernako
Dec 13 '18 at 18:37
$begingroup$
How is this a counter example?
$endgroup$
– Tegernako
Dec 13 '18 at 17:11
$begingroup$
How is this a counter example?
$endgroup$
– Tegernako
Dec 13 '18 at 17:11
$begingroup$
What I mean, if the empty set spans W, what could possibly be my T?
$endgroup$
– Tegernako
Dec 13 '18 at 17:59
$begingroup$
What I mean, if the empty set spans W, what could possibly be my T?
$endgroup$
– Tegernako
Dec 13 '18 at 17:59
1
1
$begingroup$
@Tegernako: The point is that if $W={mathbf{0}}$ (so your $T$ is the zero map), then any collection $v_1,ldots,v_k$ will satisfy that $mathrm{span}(T(v_1),ldots,T(v_k)) = mathrm{span}(mathbf{0},mathbf{0},ldots,mathbf{0}) = mathrm{span}(mathbf{0}) = {mathbf{0}}=W$. The empty set is not the only set that spans $W$.
$endgroup$
– Arturo Magidin
Dec 13 '18 at 18:12
$begingroup$
@Tegernako: The point is that if $W={mathbf{0}}$ (so your $T$ is the zero map), then any collection $v_1,ldots,v_k$ will satisfy that $mathrm{span}(T(v_1),ldots,T(v_k)) = mathrm{span}(mathbf{0},mathbf{0},ldots,mathbf{0}) = mathrm{span}(mathbf{0}) = {mathbf{0}}=W$. The empty set is not the only set that spans $W$.
$endgroup$
– Arturo Magidin
Dec 13 '18 at 18:12
1
1
$begingroup$
@Tegernako $T: vmapsto 0$ for all $v$.
$endgroup$
– amd
Dec 13 '18 at 18:17
$begingroup$
@Tegernako $T: vmapsto 0$ for all $v$.
$endgroup$
– amd
Dec 13 '18 at 18:17
$begingroup$
I see. Basically every set will satisfy what we have, but not the 'then' part. Thanks a lot, cheers for the weekend!
$endgroup$
– Tegernako
Dec 13 '18 at 18:37
$begingroup$
I see. Basically every set will satisfy what we have, but not the 'then' part. Thanks a lot, cheers for the weekend!
$endgroup$
– Tegernako
Dec 13 '18 at 18:37
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038284%2flinear-transformations-2-opposite-claims-solution-attempt-included%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Changed it, the question remains the same. Cant figure out how to prove or disprove the second claim.
$endgroup$
– Tegernako
Dec 13 '18 at 18:04
$begingroup$
What if $dim Vgtdim W$?
$endgroup$
– amd
Dec 13 '18 at 18:16