Linear transformations - 2 opposite claims, solution attempt included












0












$begingroup$


Suppose $V, W$ are vector spaces and $ T: V to W $ is a linear transformation.



$v_1, v_2, ... , v_k in V$.



Prove or disprove:




  • If $span( v_1, v_2, ... , v_k) = V$, then $span(T(v_1), ... , T(v_k) = W$.


  • If $span(T(v_1), ... , T(v_k)) = W$, then $span( v_1, v_2, ... , v_k) = V$.



My solution goes:




  • The first claim is false. let $, V, W = mathbb R$, and $ T: mathbb R to mathbb R$. We define $T$ as $T(v) = 0$, and $v_1 = [1]$. Therefore, $span(v_1) =mathbb R$, but $span(T(v_1)) = span(0) neq mathbb R$.


  • Second claim: We can easily prove that if $(T(v_1),...,T(v_n))$ is linearly independent, then $(v_1,...,v_n)$ is linearly independent as well. Is this enough to conclude that since we know $span(T(v_1), ... , T(v_k)) = W$, then $T(v_1), ... , T(v_k)$ is linearly independent, therefore $ v_1, v_2, ... , v_k$ is linearly independent, and thus $span( v_1, v_2, ... , v_k) = V$?



Thanks in advance!










share|cite|improve this question











$endgroup$












  • $begingroup$
    Changed it, the question remains the same. Cant figure out how to prove or disprove the second claim.
    $endgroup$
    – Tegernako
    Dec 13 '18 at 18:04










  • $begingroup$
    What if $dim Vgtdim W$?
    $endgroup$
    – amd
    Dec 13 '18 at 18:16
















0












$begingroup$


Suppose $V, W$ are vector spaces and $ T: V to W $ is a linear transformation.



$v_1, v_2, ... , v_k in V$.



Prove or disprove:




  • If $span( v_1, v_2, ... , v_k) = V$, then $span(T(v_1), ... , T(v_k) = W$.


  • If $span(T(v_1), ... , T(v_k)) = W$, then $span( v_1, v_2, ... , v_k) = V$.



My solution goes:




  • The first claim is false. let $, V, W = mathbb R$, and $ T: mathbb R to mathbb R$. We define $T$ as $T(v) = 0$, and $v_1 = [1]$. Therefore, $span(v_1) =mathbb R$, but $span(T(v_1)) = span(0) neq mathbb R$.


  • Second claim: We can easily prove that if $(T(v_1),...,T(v_n))$ is linearly independent, then $(v_1,...,v_n)$ is linearly independent as well. Is this enough to conclude that since we know $span(T(v_1), ... , T(v_k)) = W$, then $T(v_1), ... , T(v_k)$ is linearly independent, therefore $ v_1, v_2, ... , v_k$ is linearly independent, and thus $span( v_1, v_2, ... , v_k) = V$?



Thanks in advance!










share|cite|improve this question











$endgroup$












  • $begingroup$
    Changed it, the question remains the same. Cant figure out how to prove or disprove the second claim.
    $endgroup$
    – Tegernako
    Dec 13 '18 at 18:04










  • $begingroup$
    What if $dim Vgtdim W$?
    $endgroup$
    – amd
    Dec 13 '18 at 18:16














0












0








0





$begingroup$


Suppose $V, W$ are vector spaces and $ T: V to W $ is a linear transformation.



$v_1, v_2, ... , v_k in V$.



Prove or disprove:




  • If $span( v_1, v_2, ... , v_k) = V$, then $span(T(v_1), ... , T(v_k) = W$.


  • If $span(T(v_1), ... , T(v_k)) = W$, then $span( v_1, v_2, ... , v_k) = V$.



My solution goes:




  • The first claim is false. let $, V, W = mathbb R$, and $ T: mathbb R to mathbb R$. We define $T$ as $T(v) = 0$, and $v_1 = [1]$. Therefore, $span(v_1) =mathbb R$, but $span(T(v_1)) = span(0) neq mathbb R$.


  • Second claim: We can easily prove that if $(T(v_1),...,T(v_n))$ is linearly independent, then $(v_1,...,v_n)$ is linearly independent as well. Is this enough to conclude that since we know $span(T(v_1), ... , T(v_k)) = W$, then $T(v_1), ... , T(v_k)$ is linearly independent, therefore $ v_1, v_2, ... , v_k$ is linearly independent, and thus $span( v_1, v_2, ... , v_k) = V$?



Thanks in advance!










share|cite|improve this question











$endgroup$




Suppose $V, W$ are vector spaces and $ T: V to W $ is a linear transformation.



$v_1, v_2, ... , v_k in V$.



Prove or disprove:




  • If $span( v_1, v_2, ... , v_k) = V$, then $span(T(v_1), ... , T(v_k) = W$.


  • If $span(T(v_1), ... , T(v_k)) = W$, then $span( v_1, v_2, ... , v_k) = V$.



My solution goes:




  • The first claim is false. let $, V, W = mathbb R$, and $ T: mathbb R to mathbb R$. We define $T$ as $T(v) = 0$, and $v_1 = [1]$. Therefore, $span(v_1) =mathbb R$, but $span(T(v_1)) = span(0) neq mathbb R$.


  • Second claim: We can easily prove that if $(T(v_1),...,T(v_n))$ is linearly independent, then $(v_1,...,v_n)$ is linearly independent as well. Is this enough to conclude that since we know $span(T(v_1), ... , T(v_k)) = W$, then $T(v_1), ... , T(v_k)$ is linearly independent, therefore $ v_1, v_2, ... , v_k$ is linearly independent, and thus $span( v_1, v_2, ... , v_k) = V$?



Thanks in advance!







linear-algebra vector-spaces linear-transformations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 13 '18 at 18:04







Tegernako

















asked Dec 13 '18 at 16:57









TegernakoTegernako

908




908












  • $begingroup$
    Changed it, the question remains the same. Cant figure out how to prove or disprove the second claim.
    $endgroup$
    – Tegernako
    Dec 13 '18 at 18:04










  • $begingroup$
    What if $dim Vgtdim W$?
    $endgroup$
    – amd
    Dec 13 '18 at 18:16


















  • $begingroup$
    Changed it, the question remains the same. Cant figure out how to prove or disprove the second claim.
    $endgroup$
    – Tegernako
    Dec 13 '18 at 18:04










  • $begingroup$
    What if $dim Vgtdim W$?
    $endgroup$
    – amd
    Dec 13 '18 at 18:16
















$begingroup$
Changed it, the question remains the same. Cant figure out how to prove or disprove the second claim.
$endgroup$
– Tegernako
Dec 13 '18 at 18:04




$begingroup$
Changed it, the question remains the same. Cant figure out how to prove or disprove the second claim.
$endgroup$
– Tegernako
Dec 13 '18 at 18:04












$begingroup$
What if $dim Vgtdim W$?
$endgroup$
– amd
Dec 13 '18 at 18:16




$begingroup$
What if $dim Vgtdim W$?
$endgroup$
– amd
Dec 13 '18 at 18:16










1 Answer
1






active

oldest

votes


















1












$begingroup$

The first you did great. For the second consider $W={0}$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    How is this a counter example?
    $endgroup$
    – Tegernako
    Dec 13 '18 at 17:11










  • $begingroup$
    What I mean, if the empty set spans W, what could possibly be my T?
    $endgroup$
    – Tegernako
    Dec 13 '18 at 17:59






  • 1




    $begingroup$
    @Tegernako: The point is that if $W={mathbf{0}}$ (so your $T$ is the zero map), then any collection $v_1,ldots,v_k$ will satisfy that $mathrm{span}(T(v_1),ldots,T(v_k)) = mathrm{span}(mathbf{0},mathbf{0},ldots,mathbf{0}) = mathrm{span}(mathbf{0}) = {mathbf{0}}=W$. The empty set is not the only set that spans $W$.
    $endgroup$
    – Arturo Magidin
    Dec 13 '18 at 18:12








  • 1




    $begingroup$
    @Tegernako $T: vmapsto 0$ for all $v$.
    $endgroup$
    – amd
    Dec 13 '18 at 18:17










  • $begingroup$
    I see. Basically every set will satisfy what we have, but not the 'then' part. Thanks a lot, cheers for the weekend!
    $endgroup$
    – Tegernako
    Dec 13 '18 at 18:37











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038284%2flinear-transformations-2-opposite-claims-solution-attempt-included%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

The first you did great. For the second consider $W={0}$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    How is this a counter example?
    $endgroup$
    – Tegernako
    Dec 13 '18 at 17:11










  • $begingroup$
    What I mean, if the empty set spans W, what could possibly be my T?
    $endgroup$
    – Tegernako
    Dec 13 '18 at 17:59






  • 1




    $begingroup$
    @Tegernako: The point is that if $W={mathbf{0}}$ (so your $T$ is the zero map), then any collection $v_1,ldots,v_k$ will satisfy that $mathrm{span}(T(v_1),ldots,T(v_k)) = mathrm{span}(mathbf{0},mathbf{0},ldots,mathbf{0}) = mathrm{span}(mathbf{0}) = {mathbf{0}}=W$. The empty set is not the only set that spans $W$.
    $endgroup$
    – Arturo Magidin
    Dec 13 '18 at 18:12








  • 1




    $begingroup$
    @Tegernako $T: vmapsto 0$ for all $v$.
    $endgroup$
    – amd
    Dec 13 '18 at 18:17










  • $begingroup$
    I see. Basically every set will satisfy what we have, but not the 'then' part. Thanks a lot, cheers for the weekend!
    $endgroup$
    – Tegernako
    Dec 13 '18 at 18:37
















1












$begingroup$

The first you did great. For the second consider $W={0}$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    How is this a counter example?
    $endgroup$
    – Tegernako
    Dec 13 '18 at 17:11










  • $begingroup$
    What I mean, if the empty set spans W, what could possibly be my T?
    $endgroup$
    – Tegernako
    Dec 13 '18 at 17:59






  • 1




    $begingroup$
    @Tegernako: The point is that if $W={mathbf{0}}$ (so your $T$ is the zero map), then any collection $v_1,ldots,v_k$ will satisfy that $mathrm{span}(T(v_1),ldots,T(v_k)) = mathrm{span}(mathbf{0},mathbf{0},ldots,mathbf{0}) = mathrm{span}(mathbf{0}) = {mathbf{0}}=W$. The empty set is not the only set that spans $W$.
    $endgroup$
    – Arturo Magidin
    Dec 13 '18 at 18:12








  • 1




    $begingroup$
    @Tegernako $T: vmapsto 0$ for all $v$.
    $endgroup$
    – amd
    Dec 13 '18 at 18:17










  • $begingroup$
    I see. Basically every set will satisfy what we have, but not the 'then' part. Thanks a lot, cheers for the weekend!
    $endgroup$
    – Tegernako
    Dec 13 '18 at 18:37














1












1








1





$begingroup$

The first you did great. For the second consider $W={0}$






share|cite|improve this answer









$endgroup$



The first you did great. For the second consider $W={0}$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 13 '18 at 17:01









YankoYanko

7,3301729




7,3301729












  • $begingroup$
    How is this a counter example?
    $endgroup$
    – Tegernako
    Dec 13 '18 at 17:11










  • $begingroup$
    What I mean, if the empty set spans W, what could possibly be my T?
    $endgroup$
    – Tegernako
    Dec 13 '18 at 17:59






  • 1




    $begingroup$
    @Tegernako: The point is that if $W={mathbf{0}}$ (so your $T$ is the zero map), then any collection $v_1,ldots,v_k$ will satisfy that $mathrm{span}(T(v_1),ldots,T(v_k)) = mathrm{span}(mathbf{0},mathbf{0},ldots,mathbf{0}) = mathrm{span}(mathbf{0}) = {mathbf{0}}=W$. The empty set is not the only set that spans $W$.
    $endgroup$
    – Arturo Magidin
    Dec 13 '18 at 18:12








  • 1




    $begingroup$
    @Tegernako $T: vmapsto 0$ for all $v$.
    $endgroup$
    – amd
    Dec 13 '18 at 18:17










  • $begingroup$
    I see. Basically every set will satisfy what we have, but not the 'then' part. Thanks a lot, cheers for the weekend!
    $endgroup$
    – Tegernako
    Dec 13 '18 at 18:37


















  • $begingroup$
    How is this a counter example?
    $endgroup$
    – Tegernako
    Dec 13 '18 at 17:11










  • $begingroup$
    What I mean, if the empty set spans W, what could possibly be my T?
    $endgroup$
    – Tegernako
    Dec 13 '18 at 17:59






  • 1




    $begingroup$
    @Tegernako: The point is that if $W={mathbf{0}}$ (so your $T$ is the zero map), then any collection $v_1,ldots,v_k$ will satisfy that $mathrm{span}(T(v_1),ldots,T(v_k)) = mathrm{span}(mathbf{0},mathbf{0},ldots,mathbf{0}) = mathrm{span}(mathbf{0}) = {mathbf{0}}=W$. The empty set is not the only set that spans $W$.
    $endgroup$
    – Arturo Magidin
    Dec 13 '18 at 18:12








  • 1




    $begingroup$
    @Tegernako $T: vmapsto 0$ for all $v$.
    $endgroup$
    – amd
    Dec 13 '18 at 18:17










  • $begingroup$
    I see. Basically every set will satisfy what we have, but not the 'then' part. Thanks a lot, cheers for the weekend!
    $endgroup$
    – Tegernako
    Dec 13 '18 at 18:37
















$begingroup$
How is this a counter example?
$endgroup$
– Tegernako
Dec 13 '18 at 17:11




$begingroup$
How is this a counter example?
$endgroup$
– Tegernako
Dec 13 '18 at 17:11












$begingroup$
What I mean, if the empty set spans W, what could possibly be my T?
$endgroup$
– Tegernako
Dec 13 '18 at 17:59




$begingroup$
What I mean, if the empty set spans W, what could possibly be my T?
$endgroup$
– Tegernako
Dec 13 '18 at 17:59




1




1




$begingroup$
@Tegernako: The point is that if $W={mathbf{0}}$ (so your $T$ is the zero map), then any collection $v_1,ldots,v_k$ will satisfy that $mathrm{span}(T(v_1),ldots,T(v_k)) = mathrm{span}(mathbf{0},mathbf{0},ldots,mathbf{0}) = mathrm{span}(mathbf{0}) = {mathbf{0}}=W$. The empty set is not the only set that spans $W$.
$endgroup$
– Arturo Magidin
Dec 13 '18 at 18:12






$begingroup$
@Tegernako: The point is that if $W={mathbf{0}}$ (so your $T$ is the zero map), then any collection $v_1,ldots,v_k$ will satisfy that $mathrm{span}(T(v_1),ldots,T(v_k)) = mathrm{span}(mathbf{0},mathbf{0},ldots,mathbf{0}) = mathrm{span}(mathbf{0}) = {mathbf{0}}=W$. The empty set is not the only set that spans $W$.
$endgroup$
– Arturo Magidin
Dec 13 '18 at 18:12






1




1




$begingroup$
@Tegernako $T: vmapsto 0$ for all $v$.
$endgroup$
– amd
Dec 13 '18 at 18:17




$begingroup$
@Tegernako $T: vmapsto 0$ for all $v$.
$endgroup$
– amd
Dec 13 '18 at 18:17












$begingroup$
I see. Basically every set will satisfy what we have, but not the 'then' part. Thanks a lot, cheers for the weekend!
$endgroup$
– Tegernako
Dec 13 '18 at 18:37




$begingroup$
I see. Basically every set will satisfy what we have, but not the 'then' part. Thanks a lot, cheers for the weekend!
$endgroup$
– Tegernako
Dec 13 '18 at 18:37


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038284%2flinear-transformations-2-opposite-claims-solution-attempt-included%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Musa