Orthogonal vectors, $||lambda a+mu b||$












0












$begingroup$


If $a$ and $b$ are orthogonal, and $||a|| = ||b|| = 1$, calculate $||lambda a+ mu b||$.



$langle lambda a+ mu b, lambda a + mu b rangle = langle lambda a, lambda arangle + 2 langle lambda a, mu brangle + langle mu b, mu b rangle$



$langle lambda a, mu brangle =0$



Here is where I am unsure.



$lambda^2 langle a,a rangle + mu^2 langle b,b rangle = lambda^2+mu^2$



Is this correct?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Can you please edit your question by writing the mathematical logic and steps in MathJax? The answer should rather be $sqrt{lambda^2 + mu^2}$, but in order for us to see where your mistake on this occurs, it's much more helpful if you provide us with the work you completed.
    $endgroup$
    – Decaf-Math
    Dec 13 '18 at 18:11










  • $begingroup$
    @Decaf-Math yeah I will use math Jax I currently don’t have a full keyboard so many symbols are not possible, but I will correct later. Thanks forgot about the square root
    $endgroup$
    – Lillys
    Dec 13 '18 at 18:13






  • 1




    $begingroup$
    Do you know the definition of inner product?
    $endgroup$
    – Will M.
    Dec 13 '18 at 18:57










  • $begingroup$
    That would be true iff the vectors were orthogonal.
    $endgroup$
    – Michael Hoppe
    Dec 13 '18 at 19:23










  • $begingroup$
    @WillM. Function into r, or c, for which linearity ,positive defitness and symmetry are true. .
    $endgroup$
    – Lillys
    Dec 13 '18 at 20:19
















0












$begingroup$


If $a$ and $b$ are orthogonal, and $||a|| = ||b|| = 1$, calculate $||lambda a+ mu b||$.



$langle lambda a+ mu b, lambda a + mu b rangle = langle lambda a, lambda arangle + 2 langle lambda a, mu brangle + langle mu b, mu b rangle$



$langle lambda a, mu brangle =0$



Here is where I am unsure.



$lambda^2 langle a,a rangle + mu^2 langle b,b rangle = lambda^2+mu^2$



Is this correct?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Can you please edit your question by writing the mathematical logic and steps in MathJax? The answer should rather be $sqrt{lambda^2 + mu^2}$, but in order for us to see where your mistake on this occurs, it's much more helpful if you provide us with the work you completed.
    $endgroup$
    – Decaf-Math
    Dec 13 '18 at 18:11










  • $begingroup$
    @Decaf-Math yeah I will use math Jax I currently don’t have a full keyboard so many symbols are not possible, but I will correct later. Thanks forgot about the square root
    $endgroup$
    – Lillys
    Dec 13 '18 at 18:13






  • 1




    $begingroup$
    Do you know the definition of inner product?
    $endgroup$
    – Will M.
    Dec 13 '18 at 18:57










  • $begingroup$
    That would be true iff the vectors were orthogonal.
    $endgroup$
    – Michael Hoppe
    Dec 13 '18 at 19:23










  • $begingroup$
    @WillM. Function into r, or c, for which linearity ,positive defitness and symmetry are true. .
    $endgroup$
    – Lillys
    Dec 13 '18 at 20:19














0












0








0





$begingroup$


If $a$ and $b$ are orthogonal, and $||a|| = ||b|| = 1$, calculate $||lambda a+ mu b||$.



$langle lambda a+ mu b, lambda a + mu b rangle = langle lambda a, lambda arangle + 2 langle lambda a, mu brangle + langle mu b, mu b rangle$



$langle lambda a, mu brangle =0$



Here is where I am unsure.



$lambda^2 langle a,a rangle + mu^2 langle b,b rangle = lambda^2+mu^2$



Is this correct?










share|cite|improve this question











$endgroup$




If $a$ and $b$ are orthogonal, and $||a|| = ||b|| = 1$, calculate $||lambda a+ mu b||$.



$langle lambda a+ mu b, lambda a + mu b rangle = langle lambda a, lambda arangle + 2 langle lambda a, mu brangle + langle mu b, mu b rangle$



$langle lambda a, mu brangle =0$



Here is where I am unsure.



$lambda^2 langle a,a rangle + mu^2 langle b,b rangle = lambda^2+mu^2$



Is this correct?







linear-algebra






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 13 '18 at 18:46









Zach Langley

9731019




9731019










asked Dec 13 '18 at 17:58









LillysLillys

778




778












  • $begingroup$
    Can you please edit your question by writing the mathematical logic and steps in MathJax? The answer should rather be $sqrt{lambda^2 + mu^2}$, but in order for us to see where your mistake on this occurs, it's much more helpful if you provide us with the work you completed.
    $endgroup$
    – Decaf-Math
    Dec 13 '18 at 18:11










  • $begingroup$
    @Decaf-Math yeah I will use math Jax I currently don’t have a full keyboard so many symbols are not possible, but I will correct later. Thanks forgot about the square root
    $endgroup$
    – Lillys
    Dec 13 '18 at 18:13






  • 1




    $begingroup$
    Do you know the definition of inner product?
    $endgroup$
    – Will M.
    Dec 13 '18 at 18:57










  • $begingroup$
    That would be true iff the vectors were orthogonal.
    $endgroup$
    – Michael Hoppe
    Dec 13 '18 at 19:23










  • $begingroup$
    @WillM. Function into r, or c, for which linearity ,positive defitness and symmetry are true. .
    $endgroup$
    – Lillys
    Dec 13 '18 at 20:19


















  • $begingroup$
    Can you please edit your question by writing the mathematical logic and steps in MathJax? The answer should rather be $sqrt{lambda^2 + mu^2}$, but in order for us to see where your mistake on this occurs, it's much more helpful if you provide us with the work you completed.
    $endgroup$
    – Decaf-Math
    Dec 13 '18 at 18:11










  • $begingroup$
    @Decaf-Math yeah I will use math Jax I currently don’t have a full keyboard so many symbols are not possible, but I will correct later. Thanks forgot about the square root
    $endgroup$
    – Lillys
    Dec 13 '18 at 18:13






  • 1




    $begingroup$
    Do you know the definition of inner product?
    $endgroup$
    – Will M.
    Dec 13 '18 at 18:57










  • $begingroup$
    That would be true iff the vectors were orthogonal.
    $endgroup$
    – Michael Hoppe
    Dec 13 '18 at 19:23










  • $begingroup$
    @WillM. Function into r, or c, for which linearity ,positive defitness and symmetry are true. .
    $endgroup$
    – Lillys
    Dec 13 '18 at 20:19
















$begingroup$
Can you please edit your question by writing the mathematical logic and steps in MathJax? The answer should rather be $sqrt{lambda^2 + mu^2}$, but in order for us to see where your mistake on this occurs, it's much more helpful if you provide us with the work you completed.
$endgroup$
– Decaf-Math
Dec 13 '18 at 18:11




$begingroup$
Can you please edit your question by writing the mathematical logic and steps in MathJax? The answer should rather be $sqrt{lambda^2 + mu^2}$, but in order for us to see where your mistake on this occurs, it's much more helpful if you provide us with the work you completed.
$endgroup$
– Decaf-Math
Dec 13 '18 at 18:11












$begingroup$
@Decaf-Math yeah I will use math Jax I currently don’t have a full keyboard so many symbols are not possible, but I will correct later. Thanks forgot about the square root
$endgroup$
– Lillys
Dec 13 '18 at 18:13




$begingroup$
@Decaf-Math yeah I will use math Jax I currently don’t have a full keyboard so many symbols are not possible, but I will correct later. Thanks forgot about the square root
$endgroup$
– Lillys
Dec 13 '18 at 18:13




1




1




$begingroup$
Do you know the definition of inner product?
$endgroup$
– Will M.
Dec 13 '18 at 18:57




$begingroup$
Do you know the definition of inner product?
$endgroup$
– Will M.
Dec 13 '18 at 18:57












$begingroup$
That would be true iff the vectors were orthogonal.
$endgroup$
– Michael Hoppe
Dec 13 '18 at 19:23




$begingroup$
That would be true iff the vectors were orthogonal.
$endgroup$
– Michael Hoppe
Dec 13 '18 at 19:23












$begingroup$
@WillM. Function into r, or c, for which linearity ,positive defitness and symmetry are true. .
$endgroup$
– Lillys
Dec 13 '18 at 20:19




$begingroup$
@WillM. Function into r, or c, for which linearity ,positive defitness and symmetry are true. .
$endgroup$
– Lillys
Dec 13 '18 at 20:19










1 Answer
1






active

oldest

votes


















1












$begingroup$

Given: $a$ and $b$ are orthogonal, so $langle a , b rangle = langle b , a rangle = 0$, and $| a | = | b | = 1$, which means $sqrt{langle a , a rangle }= sqrt{ langle b , b rangle }= 1$.



We want to evaluate:



begin{align*}
| lambda a + mu b |^2 &= langle lambda a + mu b , lambda a + mu b rangle \
&=langle lambda a , lambda a + mu b rangle + langle mu b , lambda a + mu b rangle \
&= langle lambda a , lambda a rangle + langle lambda a , mu b rangle + langle mu b , lambda a rangle + langle mu b , mu b rangle \
&= lambdaoverline{lambda} langle a , a rangle + lambdaoverline{mu}langle a , b rangle + muoverline{lambda}langle b, a rangle + muoverline{mu}langle b , b rangle \
&=lambdaoverline{lambda}(1) + lambdaoverline{mu}(0) + muoverline{lambda}(0) + muoverline{mu}(1) \
&=lambdaoverline{lambda} + muoverline{mu},
end{align*}

Hence,
$$| lambda a + mu b | = sqrt{lambdaoverline{lambda}+muoverline{mu}}$$
where $overline{xi}$ denotes the complex conjugate of $xi$, note if $xiinmathbb{R}$ then $overline{xi}=xi$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    It looks like you're missing a square: you should have $|x|^2 = langle x, xrangle$.
    $endgroup$
    – B. Mehta
    Dec 13 '18 at 21:18










  • $begingroup$
    @B.Mehta Yes, oops! Thanks for the catch:)
    $endgroup$
    – Dragonite
    Dec 13 '18 at 21:28











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038379%2forthogonal-vectors-lambda-a-mu-b%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Given: $a$ and $b$ are orthogonal, so $langle a , b rangle = langle b , a rangle = 0$, and $| a | = | b | = 1$, which means $sqrt{langle a , a rangle }= sqrt{ langle b , b rangle }= 1$.



We want to evaluate:



begin{align*}
| lambda a + mu b |^2 &= langle lambda a + mu b , lambda a + mu b rangle \
&=langle lambda a , lambda a + mu b rangle + langle mu b , lambda a + mu b rangle \
&= langle lambda a , lambda a rangle + langle lambda a , mu b rangle + langle mu b , lambda a rangle + langle mu b , mu b rangle \
&= lambdaoverline{lambda} langle a , a rangle + lambdaoverline{mu}langle a , b rangle + muoverline{lambda}langle b, a rangle + muoverline{mu}langle b , b rangle \
&=lambdaoverline{lambda}(1) + lambdaoverline{mu}(0) + muoverline{lambda}(0) + muoverline{mu}(1) \
&=lambdaoverline{lambda} + muoverline{mu},
end{align*}

Hence,
$$| lambda a + mu b | = sqrt{lambdaoverline{lambda}+muoverline{mu}}$$
where $overline{xi}$ denotes the complex conjugate of $xi$, note if $xiinmathbb{R}$ then $overline{xi}=xi$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    It looks like you're missing a square: you should have $|x|^2 = langle x, xrangle$.
    $endgroup$
    – B. Mehta
    Dec 13 '18 at 21:18










  • $begingroup$
    @B.Mehta Yes, oops! Thanks for the catch:)
    $endgroup$
    – Dragonite
    Dec 13 '18 at 21:28
















1












$begingroup$

Given: $a$ and $b$ are orthogonal, so $langle a , b rangle = langle b , a rangle = 0$, and $| a | = | b | = 1$, which means $sqrt{langle a , a rangle }= sqrt{ langle b , b rangle }= 1$.



We want to evaluate:



begin{align*}
| lambda a + mu b |^2 &= langle lambda a + mu b , lambda a + mu b rangle \
&=langle lambda a , lambda a + mu b rangle + langle mu b , lambda a + mu b rangle \
&= langle lambda a , lambda a rangle + langle lambda a , mu b rangle + langle mu b , lambda a rangle + langle mu b , mu b rangle \
&= lambdaoverline{lambda} langle a , a rangle + lambdaoverline{mu}langle a , b rangle + muoverline{lambda}langle b, a rangle + muoverline{mu}langle b , b rangle \
&=lambdaoverline{lambda}(1) + lambdaoverline{mu}(0) + muoverline{lambda}(0) + muoverline{mu}(1) \
&=lambdaoverline{lambda} + muoverline{mu},
end{align*}

Hence,
$$| lambda a + mu b | = sqrt{lambdaoverline{lambda}+muoverline{mu}}$$
where $overline{xi}$ denotes the complex conjugate of $xi$, note if $xiinmathbb{R}$ then $overline{xi}=xi$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    It looks like you're missing a square: you should have $|x|^2 = langle x, xrangle$.
    $endgroup$
    – B. Mehta
    Dec 13 '18 at 21:18










  • $begingroup$
    @B.Mehta Yes, oops! Thanks for the catch:)
    $endgroup$
    – Dragonite
    Dec 13 '18 at 21:28














1












1








1





$begingroup$

Given: $a$ and $b$ are orthogonal, so $langle a , b rangle = langle b , a rangle = 0$, and $| a | = | b | = 1$, which means $sqrt{langle a , a rangle }= sqrt{ langle b , b rangle }= 1$.



We want to evaluate:



begin{align*}
| lambda a + mu b |^2 &= langle lambda a + mu b , lambda a + mu b rangle \
&=langle lambda a , lambda a + mu b rangle + langle mu b , lambda a + mu b rangle \
&= langle lambda a , lambda a rangle + langle lambda a , mu b rangle + langle mu b , lambda a rangle + langle mu b , mu b rangle \
&= lambdaoverline{lambda} langle a , a rangle + lambdaoverline{mu}langle a , b rangle + muoverline{lambda}langle b, a rangle + muoverline{mu}langle b , b rangle \
&=lambdaoverline{lambda}(1) + lambdaoverline{mu}(0) + muoverline{lambda}(0) + muoverline{mu}(1) \
&=lambdaoverline{lambda} + muoverline{mu},
end{align*}

Hence,
$$| lambda a + mu b | = sqrt{lambdaoverline{lambda}+muoverline{mu}}$$
where $overline{xi}$ denotes the complex conjugate of $xi$, note if $xiinmathbb{R}$ then $overline{xi}=xi$.






share|cite|improve this answer











$endgroup$



Given: $a$ and $b$ are orthogonal, so $langle a , b rangle = langle b , a rangle = 0$, and $| a | = | b | = 1$, which means $sqrt{langle a , a rangle }= sqrt{ langle b , b rangle }= 1$.



We want to evaluate:



begin{align*}
| lambda a + mu b |^2 &= langle lambda a + mu b , lambda a + mu b rangle \
&=langle lambda a , lambda a + mu b rangle + langle mu b , lambda a + mu b rangle \
&= langle lambda a , lambda a rangle + langle lambda a , mu b rangle + langle mu b , lambda a rangle + langle mu b , mu b rangle \
&= lambdaoverline{lambda} langle a , a rangle + lambdaoverline{mu}langle a , b rangle + muoverline{lambda}langle b, a rangle + muoverline{mu}langle b , b rangle \
&=lambdaoverline{lambda}(1) + lambdaoverline{mu}(0) + muoverline{lambda}(0) + muoverline{mu}(1) \
&=lambdaoverline{lambda} + muoverline{mu},
end{align*}

Hence,
$$| lambda a + mu b | = sqrt{lambdaoverline{lambda}+muoverline{mu}}$$
where $overline{xi}$ denotes the complex conjugate of $xi$, note if $xiinmathbb{R}$ then $overline{xi}=xi$.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 13 '18 at 21:27

























answered Dec 13 '18 at 21:07









DragoniteDragonite

1,084420




1,084420












  • $begingroup$
    It looks like you're missing a square: you should have $|x|^2 = langle x, xrangle$.
    $endgroup$
    – B. Mehta
    Dec 13 '18 at 21:18










  • $begingroup$
    @B.Mehta Yes, oops! Thanks for the catch:)
    $endgroup$
    – Dragonite
    Dec 13 '18 at 21:28


















  • $begingroup$
    It looks like you're missing a square: you should have $|x|^2 = langle x, xrangle$.
    $endgroup$
    – B. Mehta
    Dec 13 '18 at 21:18










  • $begingroup$
    @B.Mehta Yes, oops! Thanks for the catch:)
    $endgroup$
    – Dragonite
    Dec 13 '18 at 21:28
















$begingroup$
It looks like you're missing a square: you should have $|x|^2 = langle x, xrangle$.
$endgroup$
– B. Mehta
Dec 13 '18 at 21:18




$begingroup$
It looks like you're missing a square: you should have $|x|^2 = langle x, xrangle$.
$endgroup$
– B. Mehta
Dec 13 '18 at 21:18












$begingroup$
@B.Mehta Yes, oops! Thanks for the catch:)
$endgroup$
– Dragonite
Dec 13 '18 at 21:28




$begingroup$
@B.Mehta Yes, oops! Thanks for the catch:)
$endgroup$
– Dragonite
Dec 13 '18 at 21:28


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038379%2forthogonal-vectors-lambda-a-mu-b%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Musa