Orthogonal vectors, $||lambda a+mu b||$
$begingroup$
If $a$ and $b$ are orthogonal, and $||a|| = ||b|| = 1$, calculate $||lambda a+ mu b||$.
$langle lambda a+ mu b, lambda a + mu b rangle = langle lambda a, lambda arangle + 2 langle lambda a, mu brangle + langle mu b, mu b rangle$
$langle lambda a, mu brangle =0$
Here is where I am unsure.
$lambda^2 langle a,a rangle + mu^2 langle b,b rangle = lambda^2+mu^2$
Is this correct?
linear-algebra
$endgroup$
|
show 2 more comments
$begingroup$
If $a$ and $b$ are orthogonal, and $||a|| = ||b|| = 1$, calculate $||lambda a+ mu b||$.
$langle lambda a+ mu b, lambda a + mu b rangle = langle lambda a, lambda arangle + 2 langle lambda a, mu brangle + langle mu b, mu b rangle$
$langle lambda a, mu brangle =0$
Here is where I am unsure.
$lambda^2 langle a,a rangle + mu^2 langle b,b rangle = lambda^2+mu^2$
Is this correct?
linear-algebra
$endgroup$
$begingroup$
Can you please edit your question by writing the mathematical logic and steps in MathJax? The answer should rather be $sqrt{lambda^2 + mu^2}$, but in order for us to see where your mistake on this occurs, it's much more helpful if you provide us with the work you completed.
$endgroup$
– Decaf-Math
Dec 13 '18 at 18:11
$begingroup$
@Decaf-Math yeah I will use math Jax I currently don’t have a full keyboard so many symbols are not possible, but I will correct later. Thanks forgot about the square root
$endgroup$
– Lillys
Dec 13 '18 at 18:13
1
$begingroup$
Do you know the definition of inner product?
$endgroup$
– Will M.
Dec 13 '18 at 18:57
$begingroup$
That would be true iff the vectors were orthogonal.
$endgroup$
– Michael Hoppe
Dec 13 '18 at 19:23
$begingroup$
@WillM. Function into r, or c, for which linearity ,positive defitness and symmetry are true. .
$endgroup$
– Lillys
Dec 13 '18 at 20:19
|
show 2 more comments
$begingroup$
If $a$ and $b$ are orthogonal, and $||a|| = ||b|| = 1$, calculate $||lambda a+ mu b||$.
$langle lambda a+ mu b, lambda a + mu b rangle = langle lambda a, lambda arangle + 2 langle lambda a, mu brangle + langle mu b, mu b rangle$
$langle lambda a, mu brangle =0$
Here is where I am unsure.
$lambda^2 langle a,a rangle + mu^2 langle b,b rangle = lambda^2+mu^2$
Is this correct?
linear-algebra
$endgroup$
If $a$ and $b$ are orthogonal, and $||a|| = ||b|| = 1$, calculate $||lambda a+ mu b||$.
$langle lambda a+ mu b, lambda a + mu b rangle = langle lambda a, lambda arangle + 2 langle lambda a, mu brangle + langle mu b, mu b rangle$
$langle lambda a, mu brangle =0$
Here is where I am unsure.
$lambda^2 langle a,a rangle + mu^2 langle b,b rangle = lambda^2+mu^2$
Is this correct?
linear-algebra
linear-algebra
edited Dec 13 '18 at 18:46
Zach Langley
9731019
9731019
asked Dec 13 '18 at 17:58
LillysLillys
778
778
$begingroup$
Can you please edit your question by writing the mathematical logic and steps in MathJax? The answer should rather be $sqrt{lambda^2 + mu^2}$, but in order for us to see where your mistake on this occurs, it's much more helpful if you provide us with the work you completed.
$endgroup$
– Decaf-Math
Dec 13 '18 at 18:11
$begingroup$
@Decaf-Math yeah I will use math Jax I currently don’t have a full keyboard so many symbols are not possible, but I will correct later. Thanks forgot about the square root
$endgroup$
– Lillys
Dec 13 '18 at 18:13
1
$begingroup$
Do you know the definition of inner product?
$endgroup$
– Will M.
Dec 13 '18 at 18:57
$begingroup$
That would be true iff the vectors were orthogonal.
$endgroup$
– Michael Hoppe
Dec 13 '18 at 19:23
$begingroup$
@WillM. Function into r, or c, for which linearity ,positive defitness and symmetry are true. .
$endgroup$
– Lillys
Dec 13 '18 at 20:19
|
show 2 more comments
$begingroup$
Can you please edit your question by writing the mathematical logic and steps in MathJax? The answer should rather be $sqrt{lambda^2 + mu^2}$, but in order for us to see where your mistake on this occurs, it's much more helpful if you provide us with the work you completed.
$endgroup$
– Decaf-Math
Dec 13 '18 at 18:11
$begingroup$
@Decaf-Math yeah I will use math Jax I currently don’t have a full keyboard so many symbols are not possible, but I will correct later. Thanks forgot about the square root
$endgroup$
– Lillys
Dec 13 '18 at 18:13
1
$begingroup$
Do you know the definition of inner product?
$endgroup$
– Will M.
Dec 13 '18 at 18:57
$begingroup$
That would be true iff the vectors were orthogonal.
$endgroup$
– Michael Hoppe
Dec 13 '18 at 19:23
$begingroup$
@WillM. Function into r, or c, for which linearity ,positive defitness and symmetry are true. .
$endgroup$
– Lillys
Dec 13 '18 at 20:19
$begingroup$
Can you please edit your question by writing the mathematical logic and steps in MathJax? The answer should rather be $sqrt{lambda^2 + mu^2}$, but in order for us to see where your mistake on this occurs, it's much more helpful if you provide us with the work you completed.
$endgroup$
– Decaf-Math
Dec 13 '18 at 18:11
$begingroup$
Can you please edit your question by writing the mathematical logic and steps in MathJax? The answer should rather be $sqrt{lambda^2 + mu^2}$, but in order for us to see where your mistake on this occurs, it's much more helpful if you provide us with the work you completed.
$endgroup$
– Decaf-Math
Dec 13 '18 at 18:11
$begingroup$
@Decaf-Math yeah I will use math Jax I currently don’t have a full keyboard so many symbols are not possible, but I will correct later. Thanks forgot about the square root
$endgroup$
– Lillys
Dec 13 '18 at 18:13
$begingroup$
@Decaf-Math yeah I will use math Jax I currently don’t have a full keyboard so many symbols are not possible, but I will correct later. Thanks forgot about the square root
$endgroup$
– Lillys
Dec 13 '18 at 18:13
1
1
$begingroup$
Do you know the definition of inner product?
$endgroup$
– Will M.
Dec 13 '18 at 18:57
$begingroup$
Do you know the definition of inner product?
$endgroup$
– Will M.
Dec 13 '18 at 18:57
$begingroup$
That would be true iff the vectors were orthogonal.
$endgroup$
– Michael Hoppe
Dec 13 '18 at 19:23
$begingroup$
That would be true iff the vectors were orthogonal.
$endgroup$
– Michael Hoppe
Dec 13 '18 at 19:23
$begingroup$
@WillM. Function into r, or c, for which linearity ,positive defitness and symmetry are true. .
$endgroup$
– Lillys
Dec 13 '18 at 20:19
$begingroup$
@WillM. Function into r, or c, for which linearity ,positive defitness and symmetry are true. .
$endgroup$
– Lillys
Dec 13 '18 at 20:19
|
show 2 more comments
1 Answer
1
active
oldest
votes
$begingroup$
Given: $a$ and $b$ are orthogonal, so $langle a , b rangle = langle b , a rangle = 0$, and $| a | = | b | = 1$, which means $sqrt{langle a , a rangle }= sqrt{ langle b , b rangle }= 1$.
We want to evaluate:
begin{align*}
| lambda a + mu b |^2 &= langle lambda a + mu b , lambda a + mu b rangle \
&=langle lambda a , lambda a + mu b rangle + langle mu b , lambda a + mu b rangle \
&= langle lambda a , lambda a rangle + langle lambda a , mu b rangle + langle mu b , lambda a rangle + langle mu b , mu b rangle \
&= lambdaoverline{lambda} langle a , a rangle + lambdaoverline{mu}langle a , b rangle + muoverline{lambda}langle b, a rangle + muoverline{mu}langle b , b rangle \
&=lambdaoverline{lambda}(1) + lambdaoverline{mu}(0) + muoverline{lambda}(0) + muoverline{mu}(1) \
&=lambdaoverline{lambda} + muoverline{mu},
end{align*}
Hence,
$$| lambda a + mu b | = sqrt{lambdaoverline{lambda}+muoverline{mu}}$$
where $overline{xi}$ denotes the complex conjugate of $xi$, note if $xiinmathbb{R}$ then $overline{xi}=xi$.
$endgroup$
$begingroup$
It looks like you're missing a square: you should have $|x|^2 = langle x, xrangle$.
$endgroup$
– B. Mehta
Dec 13 '18 at 21:18
$begingroup$
@B.Mehta Yes, oops! Thanks for the catch:)
$endgroup$
– Dragonite
Dec 13 '18 at 21:28
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038379%2forthogonal-vectors-lambda-a-mu-b%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Given: $a$ and $b$ are orthogonal, so $langle a , b rangle = langle b , a rangle = 0$, and $| a | = | b | = 1$, which means $sqrt{langle a , a rangle }= sqrt{ langle b , b rangle }= 1$.
We want to evaluate:
begin{align*}
| lambda a + mu b |^2 &= langle lambda a + mu b , lambda a + mu b rangle \
&=langle lambda a , lambda a + mu b rangle + langle mu b , lambda a + mu b rangle \
&= langle lambda a , lambda a rangle + langle lambda a , mu b rangle + langle mu b , lambda a rangle + langle mu b , mu b rangle \
&= lambdaoverline{lambda} langle a , a rangle + lambdaoverline{mu}langle a , b rangle + muoverline{lambda}langle b, a rangle + muoverline{mu}langle b , b rangle \
&=lambdaoverline{lambda}(1) + lambdaoverline{mu}(0) + muoverline{lambda}(0) + muoverline{mu}(1) \
&=lambdaoverline{lambda} + muoverline{mu},
end{align*}
Hence,
$$| lambda a + mu b | = sqrt{lambdaoverline{lambda}+muoverline{mu}}$$
where $overline{xi}$ denotes the complex conjugate of $xi$, note if $xiinmathbb{R}$ then $overline{xi}=xi$.
$endgroup$
$begingroup$
It looks like you're missing a square: you should have $|x|^2 = langle x, xrangle$.
$endgroup$
– B. Mehta
Dec 13 '18 at 21:18
$begingroup$
@B.Mehta Yes, oops! Thanks for the catch:)
$endgroup$
– Dragonite
Dec 13 '18 at 21:28
add a comment |
$begingroup$
Given: $a$ and $b$ are orthogonal, so $langle a , b rangle = langle b , a rangle = 0$, and $| a | = | b | = 1$, which means $sqrt{langle a , a rangle }= sqrt{ langle b , b rangle }= 1$.
We want to evaluate:
begin{align*}
| lambda a + mu b |^2 &= langle lambda a + mu b , lambda a + mu b rangle \
&=langle lambda a , lambda a + mu b rangle + langle mu b , lambda a + mu b rangle \
&= langle lambda a , lambda a rangle + langle lambda a , mu b rangle + langle mu b , lambda a rangle + langle mu b , mu b rangle \
&= lambdaoverline{lambda} langle a , a rangle + lambdaoverline{mu}langle a , b rangle + muoverline{lambda}langle b, a rangle + muoverline{mu}langle b , b rangle \
&=lambdaoverline{lambda}(1) + lambdaoverline{mu}(0) + muoverline{lambda}(0) + muoverline{mu}(1) \
&=lambdaoverline{lambda} + muoverline{mu},
end{align*}
Hence,
$$| lambda a + mu b | = sqrt{lambdaoverline{lambda}+muoverline{mu}}$$
where $overline{xi}$ denotes the complex conjugate of $xi$, note if $xiinmathbb{R}$ then $overline{xi}=xi$.
$endgroup$
$begingroup$
It looks like you're missing a square: you should have $|x|^2 = langle x, xrangle$.
$endgroup$
– B. Mehta
Dec 13 '18 at 21:18
$begingroup$
@B.Mehta Yes, oops! Thanks for the catch:)
$endgroup$
– Dragonite
Dec 13 '18 at 21:28
add a comment |
$begingroup$
Given: $a$ and $b$ are orthogonal, so $langle a , b rangle = langle b , a rangle = 0$, and $| a | = | b | = 1$, which means $sqrt{langle a , a rangle }= sqrt{ langle b , b rangle }= 1$.
We want to evaluate:
begin{align*}
| lambda a + mu b |^2 &= langle lambda a + mu b , lambda a + mu b rangle \
&=langle lambda a , lambda a + mu b rangle + langle mu b , lambda a + mu b rangle \
&= langle lambda a , lambda a rangle + langle lambda a , mu b rangle + langle mu b , lambda a rangle + langle mu b , mu b rangle \
&= lambdaoverline{lambda} langle a , a rangle + lambdaoverline{mu}langle a , b rangle + muoverline{lambda}langle b, a rangle + muoverline{mu}langle b , b rangle \
&=lambdaoverline{lambda}(1) + lambdaoverline{mu}(0) + muoverline{lambda}(0) + muoverline{mu}(1) \
&=lambdaoverline{lambda} + muoverline{mu},
end{align*}
Hence,
$$| lambda a + mu b | = sqrt{lambdaoverline{lambda}+muoverline{mu}}$$
where $overline{xi}$ denotes the complex conjugate of $xi$, note if $xiinmathbb{R}$ then $overline{xi}=xi$.
$endgroup$
Given: $a$ and $b$ are orthogonal, so $langle a , b rangle = langle b , a rangle = 0$, and $| a | = | b | = 1$, which means $sqrt{langle a , a rangle }= sqrt{ langle b , b rangle }= 1$.
We want to evaluate:
begin{align*}
| lambda a + mu b |^2 &= langle lambda a + mu b , lambda a + mu b rangle \
&=langle lambda a , lambda a + mu b rangle + langle mu b , lambda a + mu b rangle \
&= langle lambda a , lambda a rangle + langle lambda a , mu b rangle + langle mu b , lambda a rangle + langle mu b , mu b rangle \
&= lambdaoverline{lambda} langle a , a rangle + lambdaoverline{mu}langle a , b rangle + muoverline{lambda}langle b, a rangle + muoverline{mu}langle b , b rangle \
&=lambdaoverline{lambda}(1) + lambdaoverline{mu}(0) + muoverline{lambda}(0) + muoverline{mu}(1) \
&=lambdaoverline{lambda} + muoverline{mu},
end{align*}
Hence,
$$| lambda a + mu b | = sqrt{lambdaoverline{lambda}+muoverline{mu}}$$
where $overline{xi}$ denotes the complex conjugate of $xi$, note if $xiinmathbb{R}$ then $overline{xi}=xi$.
edited Dec 13 '18 at 21:27
answered Dec 13 '18 at 21:07
DragoniteDragonite
1,084420
1,084420
$begingroup$
It looks like you're missing a square: you should have $|x|^2 = langle x, xrangle$.
$endgroup$
– B. Mehta
Dec 13 '18 at 21:18
$begingroup$
@B.Mehta Yes, oops! Thanks for the catch:)
$endgroup$
– Dragonite
Dec 13 '18 at 21:28
add a comment |
$begingroup$
It looks like you're missing a square: you should have $|x|^2 = langle x, xrangle$.
$endgroup$
– B. Mehta
Dec 13 '18 at 21:18
$begingroup$
@B.Mehta Yes, oops! Thanks for the catch:)
$endgroup$
– Dragonite
Dec 13 '18 at 21:28
$begingroup$
It looks like you're missing a square: you should have $|x|^2 = langle x, xrangle$.
$endgroup$
– B. Mehta
Dec 13 '18 at 21:18
$begingroup$
It looks like you're missing a square: you should have $|x|^2 = langle x, xrangle$.
$endgroup$
– B. Mehta
Dec 13 '18 at 21:18
$begingroup$
@B.Mehta Yes, oops! Thanks for the catch:)
$endgroup$
– Dragonite
Dec 13 '18 at 21:28
$begingroup$
@B.Mehta Yes, oops! Thanks for the catch:)
$endgroup$
– Dragonite
Dec 13 '18 at 21:28
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038379%2forthogonal-vectors-lambda-a-mu-b%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Can you please edit your question by writing the mathematical logic and steps in MathJax? The answer should rather be $sqrt{lambda^2 + mu^2}$, but in order for us to see where your mistake on this occurs, it's much more helpful if you provide us with the work you completed.
$endgroup$
– Decaf-Math
Dec 13 '18 at 18:11
$begingroup$
@Decaf-Math yeah I will use math Jax I currently don’t have a full keyboard so many symbols are not possible, but I will correct later. Thanks forgot about the square root
$endgroup$
– Lillys
Dec 13 '18 at 18:13
1
$begingroup$
Do you know the definition of inner product?
$endgroup$
– Will M.
Dec 13 '18 at 18:57
$begingroup$
That would be true iff the vectors were orthogonal.
$endgroup$
– Michael Hoppe
Dec 13 '18 at 19:23
$begingroup$
@WillM. Function into r, or c, for which linearity ,positive defitness and symmetry are true. .
$endgroup$
– Lillys
Dec 13 '18 at 20:19