properties of Quadratic Gauss sum
$begingroup$
Proof that $$ G(n,p^k)=pG(n,p^{k-2}) if k ≥ 2 and p is an odd prime number or if k ≥ 4 and p = 2. $$
Where $$ G(n,m)=sum_{x=0}^{m-1}eleft(frac{nx^2}{m}right) , for gcd(n,m)=1$$
My idea is to split up the sum and consider , say $$
G(n,2^k)=sum_{x=0}^{2^k-1}eleft(frac{nx^2}{2^k}right)=
sum_{x=0}^{2^{k-2}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)+sum_{x=2^{k-2}}^{2^{k-1}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)+sum_{x=2^{k-1}}^{3*2^{k-2}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)+sum_{x=3*2^{k-2}}^{2^{k}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)$$
Due to the periodicity this is equal to $$ 4sum_{x=0}^{2^{k-2}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right) $$
but this does not bring me further .
Thanks for helping .
number-theory quadratic-forms
$endgroup$
add a comment |
$begingroup$
Proof that $$ G(n,p^k)=pG(n,p^{k-2}) if k ≥ 2 and p is an odd prime number or if k ≥ 4 and p = 2. $$
Where $$ G(n,m)=sum_{x=0}^{m-1}eleft(frac{nx^2}{m}right) , for gcd(n,m)=1$$
My idea is to split up the sum and consider , say $$
G(n,2^k)=sum_{x=0}^{2^k-1}eleft(frac{nx^2}{2^k}right)=
sum_{x=0}^{2^{k-2}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)+sum_{x=2^{k-2}}^{2^{k-1}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)+sum_{x=2^{k-1}}^{3*2^{k-2}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)+sum_{x=3*2^{k-2}}^{2^{k}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)$$
Due to the periodicity this is equal to $$ 4sum_{x=0}^{2^{k-2}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right) $$
but this does not bring me further .
Thanks for helping .
number-theory quadratic-forms
$endgroup$
$begingroup$
For $p$ odd, $y$ is an inversible square $bmod p^k$ iff it is square non-zero $bmod p$. So $sum_{x=1}^{p^k} e(frac{nx^2}{p^k}) =2 sum_{l=1}^{k/2} sum_{a=1}^{p-1}sum_{r=1}^{p^{k-2l-1}} e(frac{n p^{2l}(a^2+r p)}{p^{k}})$
$endgroup$
– reuns
Dec 13 '18 at 21:03
add a comment |
$begingroup$
Proof that $$ G(n,p^k)=pG(n,p^{k-2}) if k ≥ 2 and p is an odd prime number or if k ≥ 4 and p = 2. $$
Where $$ G(n,m)=sum_{x=0}^{m-1}eleft(frac{nx^2}{m}right) , for gcd(n,m)=1$$
My idea is to split up the sum and consider , say $$
G(n,2^k)=sum_{x=0}^{2^k-1}eleft(frac{nx^2}{2^k}right)=
sum_{x=0}^{2^{k-2}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)+sum_{x=2^{k-2}}^{2^{k-1}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)+sum_{x=2^{k-1}}^{3*2^{k-2}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)+sum_{x=3*2^{k-2}}^{2^{k}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)$$
Due to the periodicity this is equal to $$ 4sum_{x=0}^{2^{k-2}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right) $$
but this does not bring me further .
Thanks for helping .
number-theory quadratic-forms
$endgroup$
Proof that $$ G(n,p^k)=pG(n,p^{k-2}) if k ≥ 2 and p is an odd prime number or if k ≥ 4 and p = 2. $$
Where $$ G(n,m)=sum_{x=0}^{m-1}eleft(frac{nx^2}{m}right) , for gcd(n,m)=1$$
My idea is to split up the sum and consider , say $$
G(n,2^k)=sum_{x=0}^{2^k-1}eleft(frac{nx^2}{2^k}right)=
sum_{x=0}^{2^{k-2}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)+sum_{x=2^{k-2}}^{2^{k-1}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)+sum_{x=2^{k-1}}^{3*2^{k-2}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)+sum_{x=3*2^{k-2}}^{2^{k}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)$$
Due to the periodicity this is equal to $$ 4sum_{x=0}^{2^{k-2}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right) $$
but this does not bring me further .
Thanks for helping .
number-theory quadratic-forms
number-theory quadratic-forms
edited Dec 13 '18 at 17:23
Larry
2,41331129
2,41331129
asked Dec 13 '18 at 16:52
MatilloMatillo
107
107
$begingroup$
For $p$ odd, $y$ is an inversible square $bmod p^k$ iff it is square non-zero $bmod p$. So $sum_{x=1}^{p^k} e(frac{nx^2}{p^k}) =2 sum_{l=1}^{k/2} sum_{a=1}^{p-1}sum_{r=1}^{p^{k-2l-1}} e(frac{n p^{2l}(a^2+r p)}{p^{k}})$
$endgroup$
– reuns
Dec 13 '18 at 21:03
add a comment |
$begingroup$
For $p$ odd, $y$ is an inversible square $bmod p^k$ iff it is square non-zero $bmod p$. So $sum_{x=1}^{p^k} e(frac{nx^2}{p^k}) =2 sum_{l=1}^{k/2} sum_{a=1}^{p-1}sum_{r=1}^{p^{k-2l-1}} e(frac{n p^{2l}(a^2+r p)}{p^{k}})$
$endgroup$
– reuns
Dec 13 '18 at 21:03
$begingroup$
For $p$ odd, $y$ is an inversible square $bmod p^k$ iff it is square non-zero $bmod p$. So $sum_{x=1}^{p^k} e(frac{nx^2}{p^k}) =2 sum_{l=1}^{k/2} sum_{a=1}^{p-1}sum_{r=1}^{p^{k-2l-1}} e(frac{n p^{2l}(a^2+r p)}{p^{k}})$
$endgroup$
– reuns
Dec 13 '18 at 21:03
$begingroup$
For $p$ odd, $y$ is an inversible square $bmod p^k$ iff it is square non-zero $bmod p$. So $sum_{x=1}^{p^k} e(frac{nx^2}{p^k}) =2 sum_{l=1}^{k/2} sum_{a=1}^{p-1}sum_{r=1}^{p^{k-2l-1}} e(frac{n p^{2l}(a^2+r p)}{p^{k}})$
$endgroup$
– reuns
Dec 13 '18 at 21:03
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038277%2fproperties-of-quadratic-gauss-sum%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038277%2fproperties-of-quadratic-gauss-sum%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
For $p$ odd, $y$ is an inversible square $bmod p^k$ iff it is square non-zero $bmod p$. So $sum_{x=1}^{p^k} e(frac{nx^2}{p^k}) =2 sum_{l=1}^{k/2} sum_{a=1}^{p-1}sum_{r=1}^{p^{k-2l-1}} e(frac{n p^{2l}(a^2+r p)}{p^{k}})$
$endgroup$
– reuns
Dec 13 '18 at 21:03