properties of Quadratic Gauss sum












0












$begingroup$


Proof that $$ G(n,p^k)=pG(n,p^{k-2}) if k ≥ 2 and p is an odd prime number or if k ≥ 4 and p = 2. $$
Where $$ G(n,m)=sum_{x=0}^{m-1}eleft(frac{nx^2}{m}right) , for gcd(n,m)=1$$
My idea is to split up the sum and consider , say $$
G(n,2^k)=sum_{x=0}^{2^k-1}eleft(frac{nx^2}{2^k}right)=
sum_{x=0}^{2^{k-2}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)+sum_{x=2^{k-2}}^{2^{k-1}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)+sum_{x=2^{k-1}}^{3*2^{k-2}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)+sum_{x=3*2^{k-2}}^{2^{k}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)$$

Due to the periodicity this is equal to $$ 4sum_{x=0}^{2^{k-2}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right) $$
but this does not bring me further .
Thanks for helping .










share|cite|improve this question











$endgroup$












  • $begingroup$
    For $p$ odd, $y$ is an inversible square $bmod p^k$ iff it is square non-zero $bmod p$. So $sum_{x=1}^{p^k} e(frac{nx^2}{p^k}) =2 sum_{l=1}^{k/2} sum_{a=1}^{p-1}sum_{r=1}^{p^{k-2l-1}} e(frac{n p^{2l}(a^2+r p)}{p^{k}})$
    $endgroup$
    – reuns
    Dec 13 '18 at 21:03


















0












$begingroup$


Proof that $$ G(n,p^k)=pG(n,p^{k-2}) if k ≥ 2 and p is an odd prime number or if k ≥ 4 and p = 2. $$
Where $$ G(n,m)=sum_{x=0}^{m-1}eleft(frac{nx^2}{m}right) , for gcd(n,m)=1$$
My idea is to split up the sum and consider , say $$
G(n,2^k)=sum_{x=0}^{2^k-1}eleft(frac{nx^2}{2^k}right)=
sum_{x=0}^{2^{k-2}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)+sum_{x=2^{k-2}}^{2^{k-1}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)+sum_{x=2^{k-1}}^{3*2^{k-2}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)+sum_{x=3*2^{k-2}}^{2^{k}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)$$

Due to the periodicity this is equal to $$ 4sum_{x=0}^{2^{k-2}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right) $$
but this does not bring me further .
Thanks for helping .










share|cite|improve this question











$endgroup$












  • $begingroup$
    For $p$ odd, $y$ is an inversible square $bmod p^k$ iff it is square non-zero $bmod p$. So $sum_{x=1}^{p^k} e(frac{nx^2}{p^k}) =2 sum_{l=1}^{k/2} sum_{a=1}^{p-1}sum_{r=1}^{p^{k-2l-1}} e(frac{n p^{2l}(a^2+r p)}{p^{k}})$
    $endgroup$
    – reuns
    Dec 13 '18 at 21:03
















0












0








0





$begingroup$


Proof that $$ G(n,p^k)=pG(n,p^{k-2}) if k ≥ 2 and p is an odd prime number or if k ≥ 4 and p = 2. $$
Where $$ G(n,m)=sum_{x=0}^{m-1}eleft(frac{nx^2}{m}right) , for gcd(n,m)=1$$
My idea is to split up the sum and consider , say $$
G(n,2^k)=sum_{x=0}^{2^k-1}eleft(frac{nx^2}{2^k}right)=
sum_{x=0}^{2^{k-2}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)+sum_{x=2^{k-2}}^{2^{k-1}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)+sum_{x=2^{k-1}}^{3*2^{k-2}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)+sum_{x=3*2^{k-2}}^{2^{k}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)$$

Due to the periodicity this is equal to $$ 4sum_{x=0}^{2^{k-2}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right) $$
but this does not bring me further .
Thanks for helping .










share|cite|improve this question











$endgroup$




Proof that $$ G(n,p^k)=pG(n,p^{k-2}) if k ≥ 2 and p is an odd prime number or if k ≥ 4 and p = 2. $$
Where $$ G(n,m)=sum_{x=0}^{m-1}eleft(frac{nx^2}{m}right) , for gcd(n,m)=1$$
My idea is to split up the sum and consider , say $$
G(n,2^k)=sum_{x=0}^{2^k-1}eleft(frac{nx^2}{2^k}right)=
sum_{x=0}^{2^{k-2}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)+sum_{x=2^{k-2}}^{2^{k-1}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)+sum_{x=2^{k-1}}^{3*2^{k-2}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)+sum_{x=3*2^{k-2}}^{2^{k}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right)$$

Due to the periodicity this is equal to $$ 4sum_{x=0}^{2^{k-2}-1}eleft(frac{frac{1}{4}nx^2}{2^{k-2}}right) $$
but this does not bring me further .
Thanks for helping .







number-theory quadratic-forms






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 13 '18 at 17:23









Larry

2,41331129




2,41331129










asked Dec 13 '18 at 16:52









MatilloMatillo

107




107












  • $begingroup$
    For $p$ odd, $y$ is an inversible square $bmod p^k$ iff it is square non-zero $bmod p$. So $sum_{x=1}^{p^k} e(frac{nx^2}{p^k}) =2 sum_{l=1}^{k/2} sum_{a=1}^{p-1}sum_{r=1}^{p^{k-2l-1}} e(frac{n p^{2l}(a^2+r p)}{p^{k}})$
    $endgroup$
    – reuns
    Dec 13 '18 at 21:03




















  • $begingroup$
    For $p$ odd, $y$ is an inversible square $bmod p^k$ iff it is square non-zero $bmod p$. So $sum_{x=1}^{p^k} e(frac{nx^2}{p^k}) =2 sum_{l=1}^{k/2} sum_{a=1}^{p-1}sum_{r=1}^{p^{k-2l-1}} e(frac{n p^{2l}(a^2+r p)}{p^{k}})$
    $endgroup$
    – reuns
    Dec 13 '18 at 21:03


















$begingroup$
For $p$ odd, $y$ is an inversible square $bmod p^k$ iff it is square non-zero $bmod p$. So $sum_{x=1}^{p^k} e(frac{nx^2}{p^k}) =2 sum_{l=1}^{k/2} sum_{a=1}^{p-1}sum_{r=1}^{p^{k-2l-1}} e(frac{n p^{2l}(a^2+r p)}{p^{k}})$
$endgroup$
– reuns
Dec 13 '18 at 21:03






$begingroup$
For $p$ odd, $y$ is an inversible square $bmod p^k$ iff it is square non-zero $bmod p$. So $sum_{x=1}^{p^k} e(frac{nx^2}{p^k}) =2 sum_{l=1}^{k/2} sum_{a=1}^{p-1}sum_{r=1}^{p^{k-2l-1}} e(frac{n p^{2l}(a^2+r p)}{p^{k}})$
$endgroup$
– reuns
Dec 13 '18 at 21:03












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038277%2fproperties-of-quadratic-gauss-sum%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038277%2fproperties-of-quadratic-gauss-sum%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Change location of user folders through cmd or PowerShell?