What is the value of this expression involving the dilogarithm $operatorname{Li}_2$ and $sqrt{2}$?












1














I'm carrying out a calculation, and the end result is $$operatorname{Li}_2(1/sqrt2) - operatorname{Li}_2(1 - 1/sqrt2) +
operatorname{Li}_2(2 - sqrt2) - operatorname{Li}_2(sqrt{2} - 1).$$

The value appears to be $pi^2/12$. How does one prove this?










share|cite|improve this question




















  • 1




    Where we can presume: $operatorname{Li}_2(z)=sum_{k=1}^infty frac{z^k}{k^2}$ the dilogarithm function.
    – Mason
    Nov 25 '18 at 7:20








  • 2




    Note that $pi^2/12 =zeta(2)/2 =frac{1}{2} sum_{k=1}^infty frac{1}{k^2}$. So this can give you a direction in which to manipulate this expression.
    – Mason
    Nov 25 '18 at 7:23






  • 1




    the closed from follows from integrating by parts $Li_2(z) = -int frac{log(1-z)}{z}dz$ @Mason
    – reuns
    Nov 25 '18 at 7:33








  • 1




    Also I think one may be able to arrive there by exploiting the functional equations that appear in the first link I offered.
    – Mason
    Nov 25 '18 at 7:34












  • @Mason Yes that's the point of integrating by parts $int_1^z frac{log(1-s)}{s}ds$
    – reuns
    Nov 25 '18 at 7:48


















1














I'm carrying out a calculation, and the end result is $$operatorname{Li}_2(1/sqrt2) - operatorname{Li}_2(1 - 1/sqrt2) +
operatorname{Li}_2(2 - sqrt2) - operatorname{Li}_2(sqrt{2} - 1).$$

The value appears to be $pi^2/12$. How does one prove this?










share|cite|improve this question




















  • 1




    Where we can presume: $operatorname{Li}_2(z)=sum_{k=1}^infty frac{z^k}{k^2}$ the dilogarithm function.
    – Mason
    Nov 25 '18 at 7:20








  • 2




    Note that $pi^2/12 =zeta(2)/2 =frac{1}{2} sum_{k=1}^infty frac{1}{k^2}$. So this can give you a direction in which to manipulate this expression.
    – Mason
    Nov 25 '18 at 7:23






  • 1




    the closed from follows from integrating by parts $Li_2(z) = -int frac{log(1-z)}{z}dz$ @Mason
    – reuns
    Nov 25 '18 at 7:33








  • 1




    Also I think one may be able to arrive there by exploiting the functional equations that appear in the first link I offered.
    – Mason
    Nov 25 '18 at 7:34












  • @Mason Yes that's the point of integrating by parts $int_1^z frac{log(1-s)}{s}ds$
    – reuns
    Nov 25 '18 at 7:48
















1












1








1


0





I'm carrying out a calculation, and the end result is $$operatorname{Li}_2(1/sqrt2) - operatorname{Li}_2(1 - 1/sqrt2) +
operatorname{Li}_2(2 - sqrt2) - operatorname{Li}_2(sqrt{2} - 1).$$

The value appears to be $pi^2/12$. How does one prove this?










share|cite|improve this question















I'm carrying out a calculation, and the end result is $$operatorname{Li}_2(1/sqrt2) - operatorname{Li}_2(1 - 1/sqrt2) +
operatorname{Li}_2(2 - sqrt2) - operatorname{Li}_2(sqrt{2} - 1).$$

The value appears to be $pi^2/12$. How does one prove this?







definite-integrals special-functions polylogarithm






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 25 '18 at 7:25









Lord Shark the Unknown

101k958132




101k958132










asked Nov 25 '18 at 7:18









alpha

233




233








  • 1




    Where we can presume: $operatorname{Li}_2(z)=sum_{k=1}^infty frac{z^k}{k^2}$ the dilogarithm function.
    – Mason
    Nov 25 '18 at 7:20








  • 2




    Note that $pi^2/12 =zeta(2)/2 =frac{1}{2} sum_{k=1}^infty frac{1}{k^2}$. So this can give you a direction in which to manipulate this expression.
    – Mason
    Nov 25 '18 at 7:23






  • 1




    the closed from follows from integrating by parts $Li_2(z) = -int frac{log(1-z)}{z}dz$ @Mason
    – reuns
    Nov 25 '18 at 7:33








  • 1




    Also I think one may be able to arrive there by exploiting the functional equations that appear in the first link I offered.
    – Mason
    Nov 25 '18 at 7:34












  • @Mason Yes that's the point of integrating by parts $int_1^z frac{log(1-s)}{s}ds$
    – reuns
    Nov 25 '18 at 7:48
















  • 1




    Where we can presume: $operatorname{Li}_2(z)=sum_{k=1}^infty frac{z^k}{k^2}$ the dilogarithm function.
    – Mason
    Nov 25 '18 at 7:20








  • 2




    Note that $pi^2/12 =zeta(2)/2 =frac{1}{2} sum_{k=1}^infty frac{1}{k^2}$. So this can give you a direction in which to manipulate this expression.
    – Mason
    Nov 25 '18 at 7:23






  • 1




    the closed from follows from integrating by parts $Li_2(z) = -int frac{log(1-z)}{z}dz$ @Mason
    – reuns
    Nov 25 '18 at 7:33








  • 1




    Also I think one may be able to arrive there by exploiting the functional equations that appear in the first link I offered.
    – Mason
    Nov 25 '18 at 7:34












  • @Mason Yes that's the point of integrating by parts $int_1^z frac{log(1-s)}{s}ds$
    – reuns
    Nov 25 '18 at 7:48










1




1




Where we can presume: $operatorname{Li}_2(z)=sum_{k=1}^infty frac{z^k}{k^2}$ the dilogarithm function.
– Mason
Nov 25 '18 at 7:20






Where we can presume: $operatorname{Li}_2(z)=sum_{k=1}^infty frac{z^k}{k^2}$ the dilogarithm function.
– Mason
Nov 25 '18 at 7:20






2




2




Note that $pi^2/12 =zeta(2)/2 =frac{1}{2} sum_{k=1}^infty frac{1}{k^2}$. So this can give you a direction in which to manipulate this expression.
– Mason
Nov 25 '18 at 7:23




Note that $pi^2/12 =zeta(2)/2 =frac{1}{2} sum_{k=1}^infty frac{1}{k^2}$. So this can give you a direction in which to manipulate this expression.
– Mason
Nov 25 '18 at 7:23




1




1




the closed from follows from integrating by parts $Li_2(z) = -int frac{log(1-z)}{z}dz$ @Mason
– reuns
Nov 25 '18 at 7:33






the closed from follows from integrating by parts $Li_2(z) = -int frac{log(1-z)}{z}dz$ @Mason
– reuns
Nov 25 '18 at 7:33






1




1




Also I think one may be able to arrive there by exploiting the functional equations that appear in the first link I offered.
– Mason
Nov 25 '18 at 7:34






Also I think one may be able to arrive there by exploiting the functional equations that appear in the first link I offered.
– Mason
Nov 25 '18 at 7:34














@Mason Yes that's the point of integrating by parts $int_1^z frac{log(1-s)}{s}ds$
– reuns
Nov 25 '18 at 7:48






@Mason Yes that's the point of integrating by parts $int_1^z frac{log(1-s)}{s}ds$
– reuns
Nov 25 '18 at 7:48












1 Answer
1






active

oldest

votes


















2














The following identity could be found in Russion version of article about dilogarithm:



$$begin{aligned}operatorname{Li}_2(xy)&=operatorname{Li}_2(x)+operatorname{Li}_2(y)-operatorname{Li}_2left(frac{x(1-y)}{1-xy}right)-operatorname{Li}_2left(frac{y(1-x)}{1-xy}right)-\
&-lnleft(frac{1-x}{1-xy}right)lnleft(frac{1-y}{1-xy}right)end{aligned}$$

Therefore
$$begin{aligned}
operatorname{Li}_2(x)+operatorname{Li}_2(y)&=operatorname{Li}_2(xy)+operatorname{Li}_2left(frac{x(1-y)}{1-xy}right)+operatorname{Li}_2left(frac{y(1-x)}{1-xy}right)+\
&+lnleft(frac{1-x}{1-xy}right)lnleft(frac{1-y}{1-xy}right)
end{aligned}$$

Now we can simplify the original expression (let's name it $E$):



$$begin{aligned}E&=left(operatorname{Li}_2frac1{sqrt2}+operatorname{Li}_2left(2-sqrt2right)right)-operatorname{Li}_2left(1-frac1{sqrt2}right)-operatorname{Li}_2(sqrt2-1)=\
&=color{red}{operatorname{Li}_2(sqrt2-1)}+operatorname{Li}_2left(frac{frac1{sqrt2}(1-(2-sqrt2))}{1-(sqrt2-1)}right)+operatorname{Li}_2left(frac{(2-sqrt2)(1-frac1{sqrt2})}{1-(sqrt2-1)}right)+\
&+lnleft(frac{1-(2-sqrt2)}{1-(sqrt2-1)}right)lnleft(frac{1-frac1{sqrt2}}{1-(sqrt2-1)}right)-operatorname{Li}_2left(1-frac1{sqrt2}right)color{red}{-operatorname{Li}_2(sqrt2-1)}=\
&=operatorname{Li}_2left(frac12right)+color{red}{operatorname{Li}_2left(1-frac1{sqrt2}right)}+lnleft(frac1{sqrt2}right)lnleft(frac12right)color{red}{-operatorname{Li}_2left(1-frac1{sqrt2}right)}=\
&=frac{pi^2}{12}-frac12ln^22+frac12ln^22=frac{pi^2}{12}
end{aligned}$$



In the last line special value of $operatorname{Li}_2left(frac12right)$ was used which equals to $frac{pi^2}{12}-frac12ln^22$.






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012534%2fwhat-is-the-value-of-this-expression-involving-the-dilogarithm-operatornameli%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2














    The following identity could be found in Russion version of article about dilogarithm:



    $$begin{aligned}operatorname{Li}_2(xy)&=operatorname{Li}_2(x)+operatorname{Li}_2(y)-operatorname{Li}_2left(frac{x(1-y)}{1-xy}right)-operatorname{Li}_2left(frac{y(1-x)}{1-xy}right)-\
    &-lnleft(frac{1-x}{1-xy}right)lnleft(frac{1-y}{1-xy}right)end{aligned}$$

    Therefore
    $$begin{aligned}
    operatorname{Li}_2(x)+operatorname{Li}_2(y)&=operatorname{Li}_2(xy)+operatorname{Li}_2left(frac{x(1-y)}{1-xy}right)+operatorname{Li}_2left(frac{y(1-x)}{1-xy}right)+\
    &+lnleft(frac{1-x}{1-xy}right)lnleft(frac{1-y}{1-xy}right)
    end{aligned}$$

    Now we can simplify the original expression (let's name it $E$):



    $$begin{aligned}E&=left(operatorname{Li}_2frac1{sqrt2}+operatorname{Li}_2left(2-sqrt2right)right)-operatorname{Li}_2left(1-frac1{sqrt2}right)-operatorname{Li}_2(sqrt2-1)=\
    &=color{red}{operatorname{Li}_2(sqrt2-1)}+operatorname{Li}_2left(frac{frac1{sqrt2}(1-(2-sqrt2))}{1-(sqrt2-1)}right)+operatorname{Li}_2left(frac{(2-sqrt2)(1-frac1{sqrt2})}{1-(sqrt2-1)}right)+\
    &+lnleft(frac{1-(2-sqrt2)}{1-(sqrt2-1)}right)lnleft(frac{1-frac1{sqrt2}}{1-(sqrt2-1)}right)-operatorname{Li}_2left(1-frac1{sqrt2}right)color{red}{-operatorname{Li}_2(sqrt2-1)}=\
    &=operatorname{Li}_2left(frac12right)+color{red}{operatorname{Li}_2left(1-frac1{sqrt2}right)}+lnleft(frac1{sqrt2}right)lnleft(frac12right)color{red}{-operatorname{Li}_2left(1-frac1{sqrt2}right)}=\
    &=frac{pi^2}{12}-frac12ln^22+frac12ln^22=frac{pi^2}{12}
    end{aligned}$$



    In the last line special value of $operatorname{Li}_2left(frac12right)$ was used which equals to $frac{pi^2}{12}-frac12ln^22$.






    share|cite|improve this answer


























      2














      The following identity could be found in Russion version of article about dilogarithm:



      $$begin{aligned}operatorname{Li}_2(xy)&=operatorname{Li}_2(x)+operatorname{Li}_2(y)-operatorname{Li}_2left(frac{x(1-y)}{1-xy}right)-operatorname{Li}_2left(frac{y(1-x)}{1-xy}right)-\
      &-lnleft(frac{1-x}{1-xy}right)lnleft(frac{1-y}{1-xy}right)end{aligned}$$

      Therefore
      $$begin{aligned}
      operatorname{Li}_2(x)+operatorname{Li}_2(y)&=operatorname{Li}_2(xy)+operatorname{Li}_2left(frac{x(1-y)}{1-xy}right)+operatorname{Li}_2left(frac{y(1-x)}{1-xy}right)+\
      &+lnleft(frac{1-x}{1-xy}right)lnleft(frac{1-y}{1-xy}right)
      end{aligned}$$

      Now we can simplify the original expression (let's name it $E$):



      $$begin{aligned}E&=left(operatorname{Li}_2frac1{sqrt2}+operatorname{Li}_2left(2-sqrt2right)right)-operatorname{Li}_2left(1-frac1{sqrt2}right)-operatorname{Li}_2(sqrt2-1)=\
      &=color{red}{operatorname{Li}_2(sqrt2-1)}+operatorname{Li}_2left(frac{frac1{sqrt2}(1-(2-sqrt2))}{1-(sqrt2-1)}right)+operatorname{Li}_2left(frac{(2-sqrt2)(1-frac1{sqrt2})}{1-(sqrt2-1)}right)+\
      &+lnleft(frac{1-(2-sqrt2)}{1-(sqrt2-1)}right)lnleft(frac{1-frac1{sqrt2}}{1-(sqrt2-1)}right)-operatorname{Li}_2left(1-frac1{sqrt2}right)color{red}{-operatorname{Li}_2(sqrt2-1)}=\
      &=operatorname{Li}_2left(frac12right)+color{red}{operatorname{Li}_2left(1-frac1{sqrt2}right)}+lnleft(frac1{sqrt2}right)lnleft(frac12right)color{red}{-operatorname{Li}_2left(1-frac1{sqrt2}right)}=\
      &=frac{pi^2}{12}-frac12ln^22+frac12ln^22=frac{pi^2}{12}
      end{aligned}$$



      In the last line special value of $operatorname{Li}_2left(frac12right)$ was used which equals to $frac{pi^2}{12}-frac12ln^22$.






      share|cite|improve this answer
























        2












        2








        2






        The following identity could be found in Russion version of article about dilogarithm:



        $$begin{aligned}operatorname{Li}_2(xy)&=operatorname{Li}_2(x)+operatorname{Li}_2(y)-operatorname{Li}_2left(frac{x(1-y)}{1-xy}right)-operatorname{Li}_2left(frac{y(1-x)}{1-xy}right)-\
        &-lnleft(frac{1-x}{1-xy}right)lnleft(frac{1-y}{1-xy}right)end{aligned}$$

        Therefore
        $$begin{aligned}
        operatorname{Li}_2(x)+operatorname{Li}_2(y)&=operatorname{Li}_2(xy)+operatorname{Li}_2left(frac{x(1-y)}{1-xy}right)+operatorname{Li}_2left(frac{y(1-x)}{1-xy}right)+\
        &+lnleft(frac{1-x}{1-xy}right)lnleft(frac{1-y}{1-xy}right)
        end{aligned}$$

        Now we can simplify the original expression (let's name it $E$):



        $$begin{aligned}E&=left(operatorname{Li}_2frac1{sqrt2}+operatorname{Li}_2left(2-sqrt2right)right)-operatorname{Li}_2left(1-frac1{sqrt2}right)-operatorname{Li}_2(sqrt2-1)=\
        &=color{red}{operatorname{Li}_2(sqrt2-1)}+operatorname{Li}_2left(frac{frac1{sqrt2}(1-(2-sqrt2))}{1-(sqrt2-1)}right)+operatorname{Li}_2left(frac{(2-sqrt2)(1-frac1{sqrt2})}{1-(sqrt2-1)}right)+\
        &+lnleft(frac{1-(2-sqrt2)}{1-(sqrt2-1)}right)lnleft(frac{1-frac1{sqrt2}}{1-(sqrt2-1)}right)-operatorname{Li}_2left(1-frac1{sqrt2}right)color{red}{-operatorname{Li}_2(sqrt2-1)}=\
        &=operatorname{Li}_2left(frac12right)+color{red}{operatorname{Li}_2left(1-frac1{sqrt2}right)}+lnleft(frac1{sqrt2}right)lnleft(frac12right)color{red}{-operatorname{Li}_2left(1-frac1{sqrt2}right)}=\
        &=frac{pi^2}{12}-frac12ln^22+frac12ln^22=frac{pi^2}{12}
        end{aligned}$$



        In the last line special value of $operatorname{Li}_2left(frac12right)$ was used which equals to $frac{pi^2}{12}-frac12ln^22$.






        share|cite|improve this answer












        The following identity could be found in Russion version of article about dilogarithm:



        $$begin{aligned}operatorname{Li}_2(xy)&=operatorname{Li}_2(x)+operatorname{Li}_2(y)-operatorname{Li}_2left(frac{x(1-y)}{1-xy}right)-operatorname{Li}_2left(frac{y(1-x)}{1-xy}right)-\
        &-lnleft(frac{1-x}{1-xy}right)lnleft(frac{1-y}{1-xy}right)end{aligned}$$

        Therefore
        $$begin{aligned}
        operatorname{Li}_2(x)+operatorname{Li}_2(y)&=operatorname{Li}_2(xy)+operatorname{Li}_2left(frac{x(1-y)}{1-xy}right)+operatorname{Li}_2left(frac{y(1-x)}{1-xy}right)+\
        &+lnleft(frac{1-x}{1-xy}right)lnleft(frac{1-y}{1-xy}right)
        end{aligned}$$

        Now we can simplify the original expression (let's name it $E$):



        $$begin{aligned}E&=left(operatorname{Li}_2frac1{sqrt2}+operatorname{Li}_2left(2-sqrt2right)right)-operatorname{Li}_2left(1-frac1{sqrt2}right)-operatorname{Li}_2(sqrt2-1)=\
        &=color{red}{operatorname{Li}_2(sqrt2-1)}+operatorname{Li}_2left(frac{frac1{sqrt2}(1-(2-sqrt2))}{1-(sqrt2-1)}right)+operatorname{Li}_2left(frac{(2-sqrt2)(1-frac1{sqrt2})}{1-(sqrt2-1)}right)+\
        &+lnleft(frac{1-(2-sqrt2)}{1-(sqrt2-1)}right)lnleft(frac{1-frac1{sqrt2}}{1-(sqrt2-1)}right)-operatorname{Li}_2left(1-frac1{sqrt2}right)color{red}{-operatorname{Li}_2(sqrt2-1)}=\
        &=operatorname{Li}_2left(frac12right)+color{red}{operatorname{Li}_2left(1-frac1{sqrt2}right)}+lnleft(frac1{sqrt2}right)lnleft(frac12right)color{red}{-operatorname{Li}_2left(1-frac1{sqrt2}right)}=\
        &=frac{pi^2}{12}-frac12ln^22+frac12ln^22=frac{pi^2}{12}
        end{aligned}$$



        In the last line special value of $operatorname{Li}_2left(frac12right)$ was used which equals to $frac{pi^2}{12}-frac12ln^22$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 26 '18 at 5:45









        Mikalai Parshutsich

        463315




        463315






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012534%2fwhat-is-the-value-of-this-expression-involving-the-dilogarithm-operatornameli%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            In PowerPoint, is there a keyboard shortcut for bulleted / numbered list?

            How to put 3 figures in Latex with 2 figures side by side and 1 below these side by side images but in...