How to prove that...
$begingroup$
Through some calculation, it can be shown that
$$e = 1+cfrac{1+cfrac{1+cfrac{1+cfrac{vdots}{4}}{3}}{2}}{1}tag{1}$$
$$2e = 1+cfrac{2+cfrac{3+cfrac{4+cfrac{vdots}{4}}{3}}{2}}{1}tag{2}$$
$$5e = 1+cfrac{2^2+cfrac{3^2+cfrac{4^2+cfrac{vdots}{4}}{3}}{2}}{1}tag{3}$$
In general, how can I show that
$$sum_{k=1}^{infty}frac{k^{n+1}}{k!}=eB_{n+1}=1+cfrac{2^n+cfrac{3^n+cfrac{4^n+cfrac{vdots}{4}}{3}}{2}}{1}$$
, where $B_n$ is the $n^{th}$ Bell number.
I saw a similar question on Brilliant.org, but I did not pay close attention to the proof, and I ended up forgetting how to prove this kind of problem.
I remember that the proof involves in simplifying the denominator and moving from top to bottom so that the final denominator is in the form of $n!$, which is the criteria for Maclaurin series.
Here is the background information Infinite Series $sumlimits_{k=1}^{infty}frac{k^n}{k!}$
sequences-and-series continued-fractions
$endgroup$
add a comment |
$begingroup$
Through some calculation, it can be shown that
$$e = 1+cfrac{1+cfrac{1+cfrac{1+cfrac{vdots}{4}}{3}}{2}}{1}tag{1}$$
$$2e = 1+cfrac{2+cfrac{3+cfrac{4+cfrac{vdots}{4}}{3}}{2}}{1}tag{2}$$
$$5e = 1+cfrac{2^2+cfrac{3^2+cfrac{4^2+cfrac{vdots}{4}}{3}}{2}}{1}tag{3}$$
In general, how can I show that
$$sum_{k=1}^{infty}frac{k^{n+1}}{k!}=eB_{n+1}=1+cfrac{2^n+cfrac{3^n+cfrac{4^n+cfrac{vdots}{4}}{3}}{2}}{1}$$
, where $B_n$ is the $n^{th}$ Bell number.
I saw a similar question on Brilliant.org, but I did not pay close attention to the proof, and I ended up forgetting how to prove this kind of problem.
I remember that the proof involves in simplifying the denominator and moving from top to bottom so that the final denominator is in the form of $n!$, which is the criteria for Maclaurin series.
Here is the background information Infinite Series $sumlimits_{k=1}^{infty}frac{k^n}{k!}$
sequences-and-series continued-fractions
$endgroup$
$begingroup$
See my answer here for the first equation.
$endgroup$
– JavaMan
Dec 21 '18 at 23:26
1
$begingroup$
It might be worth noting in the question that the $B_n$ are Bell numbers.
$endgroup$
– Carl Schildkraut
Dec 21 '18 at 23:27
$begingroup$
The last time I saw upwards continued fractions was...last millenium, I think. Is there any real advantage to upwards instead of downwards?
$endgroup$
– DonAntonio
Dec 21 '18 at 23:33
$begingroup$
@CarlSchildkraut: Ok, I will note that.
$endgroup$
– Larry
Dec 21 '18 at 23:53
add a comment |
$begingroup$
Through some calculation, it can be shown that
$$e = 1+cfrac{1+cfrac{1+cfrac{1+cfrac{vdots}{4}}{3}}{2}}{1}tag{1}$$
$$2e = 1+cfrac{2+cfrac{3+cfrac{4+cfrac{vdots}{4}}{3}}{2}}{1}tag{2}$$
$$5e = 1+cfrac{2^2+cfrac{3^2+cfrac{4^2+cfrac{vdots}{4}}{3}}{2}}{1}tag{3}$$
In general, how can I show that
$$sum_{k=1}^{infty}frac{k^{n+1}}{k!}=eB_{n+1}=1+cfrac{2^n+cfrac{3^n+cfrac{4^n+cfrac{vdots}{4}}{3}}{2}}{1}$$
, where $B_n$ is the $n^{th}$ Bell number.
I saw a similar question on Brilliant.org, but I did not pay close attention to the proof, and I ended up forgetting how to prove this kind of problem.
I remember that the proof involves in simplifying the denominator and moving from top to bottom so that the final denominator is in the form of $n!$, which is the criteria for Maclaurin series.
Here is the background information Infinite Series $sumlimits_{k=1}^{infty}frac{k^n}{k!}$
sequences-and-series continued-fractions
$endgroup$
Through some calculation, it can be shown that
$$e = 1+cfrac{1+cfrac{1+cfrac{1+cfrac{vdots}{4}}{3}}{2}}{1}tag{1}$$
$$2e = 1+cfrac{2+cfrac{3+cfrac{4+cfrac{vdots}{4}}{3}}{2}}{1}tag{2}$$
$$5e = 1+cfrac{2^2+cfrac{3^2+cfrac{4^2+cfrac{vdots}{4}}{3}}{2}}{1}tag{3}$$
In general, how can I show that
$$sum_{k=1}^{infty}frac{k^{n+1}}{k!}=eB_{n+1}=1+cfrac{2^n+cfrac{3^n+cfrac{4^n+cfrac{vdots}{4}}{3}}{2}}{1}$$
, where $B_n$ is the $n^{th}$ Bell number.
I saw a similar question on Brilliant.org, but I did not pay close attention to the proof, and I ended up forgetting how to prove this kind of problem.
I remember that the proof involves in simplifying the denominator and moving from top to bottom so that the final denominator is in the form of $n!$, which is the criteria for Maclaurin series.
Here is the background information Infinite Series $sumlimits_{k=1}^{infty}frac{k^n}{k!}$
sequences-and-series continued-fractions
sequences-and-series continued-fractions
edited Jan 17 at 2:37
Larry
asked Dec 21 '18 at 23:18
LarryLarry
2,55031131
2,55031131
$begingroup$
See my answer here for the first equation.
$endgroup$
– JavaMan
Dec 21 '18 at 23:26
1
$begingroup$
It might be worth noting in the question that the $B_n$ are Bell numbers.
$endgroup$
– Carl Schildkraut
Dec 21 '18 at 23:27
$begingroup$
The last time I saw upwards continued fractions was...last millenium, I think. Is there any real advantage to upwards instead of downwards?
$endgroup$
– DonAntonio
Dec 21 '18 at 23:33
$begingroup$
@CarlSchildkraut: Ok, I will note that.
$endgroup$
– Larry
Dec 21 '18 at 23:53
add a comment |
$begingroup$
See my answer here for the first equation.
$endgroup$
– JavaMan
Dec 21 '18 at 23:26
1
$begingroup$
It might be worth noting in the question that the $B_n$ are Bell numbers.
$endgroup$
– Carl Schildkraut
Dec 21 '18 at 23:27
$begingroup$
The last time I saw upwards continued fractions was...last millenium, I think. Is there any real advantage to upwards instead of downwards?
$endgroup$
– DonAntonio
Dec 21 '18 at 23:33
$begingroup$
@CarlSchildkraut: Ok, I will note that.
$endgroup$
– Larry
Dec 21 '18 at 23:53
$begingroup$
See my answer here for the first equation.
$endgroup$
– JavaMan
Dec 21 '18 at 23:26
$begingroup$
See my answer here for the first equation.
$endgroup$
– JavaMan
Dec 21 '18 at 23:26
1
1
$begingroup$
It might be worth noting in the question that the $B_n$ are Bell numbers.
$endgroup$
– Carl Schildkraut
Dec 21 '18 at 23:27
$begingroup$
It might be worth noting in the question that the $B_n$ are Bell numbers.
$endgroup$
– Carl Schildkraut
Dec 21 '18 at 23:27
$begingroup$
The last time I saw upwards continued fractions was...last millenium, I think. Is there any real advantage to upwards instead of downwards?
$endgroup$
– DonAntonio
Dec 21 '18 at 23:33
$begingroup$
The last time I saw upwards continued fractions was...last millenium, I think. Is there any real advantage to upwards instead of downwards?
$endgroup$
– DonAntonio
Dec 21 '18 at 23:33
$begingroup$
@CarlSchildkraut: Ok, I will note that.
$endgroup$
– Larry
Dec 21 '18 at 23:53
$begingroup$
@CarlSchildkraut: Ok, I will note that.
$endgroup$
– Larry
Dec 21 '18 at 23:53
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
After some work, I recalled the method from Brilliant.org. This is not a rigorous proof, but it offers some intuitive sense.
We will first prove the first equation. Note that
$$begin{align}
1+cfrac{1+cfrac{1+cfrac{1+cfrac{1+cfrac{1+vdots}{5}}{4}}{3}}{2}}{1}&=1+cfrac{1+cfrac{1+cfrac{1+cfrac{1+cfrac{1}{5}+cfrac{vdots}{5}}{4}}{3}}{2}}{1}\
&=1+cfrac{1+cfrac{1+cfrac{1+cfrac{1}{4}+cfrac{1}{4cdot5}+cfrac{vdots}{4cdot5}}{3}}{2}}{1}\
&=1+cfrac{1+cfrac{1+cfrac{1}{3}+cfrac{1}{3cdot4}+cfrac{1}{3cdot4cdot5}+cfrac{vdots}{3cdot4cdot5}}{2}}{1}\
&=1+cfrac{1+cfrac{1}{2}+cfrac{1}{2cdot3}+cfrac{1}{2cdot3cdot4}+cfrac{1}{2cdot3cdot4cdot5}+cfrac{vdots}{2cdot3cdot4cdot5}}{1}\
&=1+cfrac{1}{1!}+cfrac{1}{2!}+cfrac{1}{3!}+cfrac{1}{4!}+cfrac{1}{5!}+cdots\
&=color{red}etag{1}
end{align}$$
We will then proceed to the second equation.
$$begin{align}
1+cfrac{2+cfrac{3+cfrac{4+cfrac{5+cfrac{6+vdots}{5}}{4}}{3}}{2}}{1}&=1+cfrac{2+cfrac{3+cfrac{4+cfrac{5+cfrac{6}{5}+cfrac{vdots}{5}}{4}}{3}}{2}}{1}\
&=1+cfrac{2+cfrac{3+cfrac{4+cfrac{5}{4}+cfrac{6}{4cdot5}+cfrac{vdots}{4cdot5}}{3}}{2}}{1}\
&=1+cfrac{2+cfrac{3+cfrac{4}{3}+cfrac{5}{3cdot4}+cfrac{6}{3cdot4cdot5}+cfrac{vdots}{3cdot4cdot5}}{2}}{1}\
&=1+cfrac{2+cfrac{3}{2}+cfrac{4}{2cdot3}+cfrac{5}{2cdot3cdot4}+cfrac{6}{2cdot3cdot4cdot5}+cfrac{vdots}{2cdot3cdot4cdot5}}{1}\
&=1+cfrac{2}{1!}+cfrac{3}{2!}+cfrac{4}{3!}+cfrac{5}{4!}+cfrac{6}{5!}+cdots\
&=sum_{n=1}^{infty}cfrac{n^2}{n!}\
&=color{red}{2e}tag{2}
end{align}$$
Then, using the same logic, we have
$$sum_{k=1}^{infty}frac{k^{n+1}}{k!}=eB_{n+1}=1+cfrac{2^n+cfrac{3^n+cfrac{4^n+cfrac{vdots}{4}}{3}}{2}}{1}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048990%2fhow-to-prove-that-sum-k-1-infty-frackn1k-eb-n1-1-cfrac2n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
After some work, I recalled the method from Brilliant.org. This is not a rigorous proof, but it offers some intuitive sense.
We will first prove the first equation. Note that
$$begin{align}
1+cfrac{1+cfrac{1+cfrac{1+cfrac{1+cfrac{1+vdots}{5}}{4}}{3}}{2}}{1}&=1+cfrac{1+cfrac{1+cfrac{1+cfrac{1+cfrac{1}{5}+cfrac{vdots}{5}}{4}}{3}}{2}}{1}\
&=1+cfrac{1+cfrac{1+cfrac{1+cfrac{1}{4}+cfrac{1}{4cdot5}+cfrac{vdots}{4cdot5}}{3}}{2}}{1}\
&=1+cfrac{1+cfrac{1+cfrac{1}{3}+cfrac{1}{3cdot4}+cfrac{1}{3cdot4cdot5}+cfrac{vdots}{3cdot4cdot5}}{2}}{1}\
&=1+cfrac{1+cfrac{1}{2}+cfrac{1}{2cdot3}+cfrac{1}{2cdot3cdot4}+cfrac{1}{2cdot3cdot4cdot5}+cfrac{vdots}{2cdot3cdot4cdot5}}{1}\
&=1+cfrac{1}{1!}+cfrac{1}{2!}+cfrac{1}{3!}+cfrac{1}{4!}+cfrac{1}{5!}+cdots\
&=color{red}etag{1}
end{align}$$
We will then proceed to the second equation.
$$begin{align}
1+cfrac{2+cfrac{3+cfrac{4+cfrac{5+cfrac{6+vdots}{5}}{4}}{3}}{2}}{1}&=1+cfrac{2+cfrac{3+cfrac{4+cfrac{5+cfrac{6}{5}+cfrac{vdots}{5}}{4}}{3}}{2}}{1}\
&=1+cfrac{2+cfrac{3+cfrac{4+cfrac{5}{4}+cfrac{6}{4cdot5}+cfrac{vdots}{4cdot5}}{3}}{2}}{1}\
&=1+cfrac{2+cfrac{3+cfrac{4}{3}+cfrac{5}{3cdot4}+cfrac{6}{3cdot4cdot5}+cfrac{vdots}{3cdot4cdot5}}{2}}{1}\
&=1+cfrac{2+cfrac{3}{2}+cfrac{4}{2cdot3}+cfrac{5}{2cdot3cdot4}+cfrac{6}{2cdot3cdot4cdot5}+cfrac{vdots}{2cdot3cdot4cdot5}}{1}\
&=1+cfrac{2}{1!}+cfrac{3}{2!}+cfrac{4}{3!}+cfrac{5}{4!}+cfrac{6}{5!}+cdots\
&=sum_{n=1}^{infty}cfrac{n^2}{n!}\
&=color{red}{2e}tag{2}
end{align}$$
Then, using the same logic, we have
$$sum_{k=1}^{infty}frac{k^{n+1}}{k!}=eB_{n+1}=1+cfrac{2^n+cfrac{3^n+cfrac{4^n+cfrac{vdots}{4}}{3}}{2}}{1}$$
$endgroup$
add a comment |
$begingroup$
After some work, I recalled the method from Brilliant.org. This is not a rigorous proof, but it offers some intuitive sense.
We will first prove the first equation. Note that
$$begin{align}
1+cfrac{1+cfrac{1+cfrac{1+cfrac{1+cfrac{1+vdots}{5}}{4}}{3}}{2}}{1}&=1+cfrac{1+cfrac{1+cfrac{1+cfrac{1+cfrac{1}{5}+cfrac{vdots}{5}}{4}}{3}}{2}}{1}\
&=1+cfrac{1+cfrac{1+cfrac{1+cfrac{1}{4}+cfrac{1}{4cdot5}+cfrac{vdots}{4cdot5}}{3}}{2}}{1}\
&=1+cfrac{1+cfrac{1+cfrac{1}{3}+cfrac{1}{3cdot4}+cfrac{1}{3cdot4cdot5}+cfrac{vdots}{3cdot4cdot5}}{2}}{1}\
&=1+cfrac{1+cfrac{1}{2}+cfrac{1}{2cdot3}+cfrac{1}{2cdot3cdot4}+cfrac{1}{2cdot3cdot4cdot5}+cfrac{vdots}{2cdot3cdot4cdot5}}{1}\
&=1+cfrac{1}{1!}+cfrac{1}{2!}+cfrac{1}{3!}+cfrac{1}{4!}+cfrac{1}{5!}+cdots\
&=color{red}etag{1}
end{align}$$
We will then proceed to the second equation.
$$begin{align}
1+cfrac{2+cfrac{3+cfrac{4+cfrac{5+cfrac{6+vdots}{5}}{4}}{3}}{2}}{1}&=1+cfrac{2+cfrac{3+cfrac{4+cfrac{5+cfrac{6}{5}+cfrac{vdots}{5}}{4}}{3}}{2}}{1}\
&=1+cfrac{2+cfrac{3+cfrac{4+cfrac{5}{4}+cfrac{6}{4cdot5}+cfrac{vdots}{4cdot5}}{3}}{2}}{1}\
&=1+cfrac{2+cfrac{3+cfrac{4}{3}+cfrac{5}{3cdot4}+cfrac{6}{3cdot4cdot5}+cfrac{vdots}{3cdot4cdot5}}{2}}{1}\
&=1+cfrac{2+cfrac{3}{2}+cfrac{4}{2cdot3}+cfrac{5}{2cdot3cdot4}+cfrac{6}{2cdot3cdot4cdot5}+cfrac{vdots}{2cdot3cdot4cdot5}}{1}\
&=1+cfrac{2}{1!}+cfrac{3}{2!}+cfrac{4}{3!}+cfrac{5}{4!}+cfrac{6}{5!}+cdots\
&=sum_{n=1}^{infty}cfrac{n^2}{n!}\
&=color{red}{2e}tag{2}
end{align}$$
Then, using the same logic, we have
$$sum_{k=1}^{infty}frac{k^{n+1}}{k!}=eB_{n+1}=1+cfrac{2^n+cfrac{3^n+cfrac{4^n+cfrac{vdots}{4}}{3}}{2}}{1}$$
$endgroup$
add a comment |
$begingroup$
After some work, I recalled the method from Brilliant.org. This is not a rigorous proof, but it offers some intuitive sense.
We will first prove the first equation. Note that
$$begin{align}
1+cfrac{1+cfrac{1+cfrac{1+cfrac{1+cfrac{1+vdots}{5}}{4}}{3}}{2}}{1}&=1+cfrac{1+cfrac{1+cfrac{1+cfrac{1+cfrac{1}{5}+cfrac{vdots}{5}}{4}}{3}}{2}}{1}\
&=1+cfrac{1+cfrac{1+cfrac{1+cfrac{1}{4}+cfrac{1}{4cdot5}+cfrac{vdots}{4cdot5}}{3}}{2}}{1}\
&=1+cfrac{1+cfrac{1+cfrac{1}{3}+cfrac{1}{3cdot4}+cfrac{1}{3cdot4cdot5}+cfrac{vdots}{3cdot4cdot5}}{2}}{1}\
&=1+cfrac{1+cfrac{1}{2}+cfrac{1}{2cdot3}+cfrac{1}{2cdot3cdot4}+cfrac{1}{2cdot3cdot4cdot5}+cfrac{vdots}{2cdot3cdot4cdot5}}{1}\
&=1+cfrac{1}{1!}+cfrac{1}{2!}+cfrac{1}{3!}+cfrac{1}{4!}+cfrac{1}{5!}+cdots\
&=color{red}etag{1}
end{align}$$
We will then proceed to the second equation.
$$begin{align}
1+cfrac{2+cfrac{3+cfrac{4+cfrac{5+cfrac{6+vdots}{5}}{4}}{3}}{2}}{1}&=1+cfrac{2+cfrac{3+cfrac{4+cfrac{5+cfrac{6}{5}+cfrac{vdots}{5}}{4}}{3}}{2}}{1}\
&=1+cfrac{2+cfrac{3+cfrac{4+cfrac{5}{4}+cfrac{6}{4cdot5}+cfrac{vdots}{4cdot5}}{3}}{2}}{1}\
&=1+cfrac{2+cfrac{3+cfrac{4}{3}+cfrac{5}{3cdot4}+cfrac{6}{3cdot4cdot5}+cfrac{vdots}{3cdot4cdot5}}{2}}{1}\
&=1+cfrac{2+cfrac{3}{2}+cfrac{4}{2cdot3}+cfrac{5}{2cdot3cdot4}+cfrac{6}{2cdot3cdot4cdot5}+cfrac{vdots}{2cdot3cdot4cdot5}}{1}\
&=1+cfrac{2}{1!}+cfrac{3}{2!}+cfrac{4}{3!}+cfrac{5}{4!}+cfrac{6}{5!}+cdots\
&=sum_{n=1}^{infty}cfrac{n^2}{n!}\
&=color{red}{2e}tag{2}
end{align}$$
Then, using the same logic, we have
$$sum_{k=1}^{infty}frac{k^{n+1}}{k!}=eB_{n+1}=1+cfrac{2^n+cfrac{3^n+cfrac{4^n+cfrac{vdots}{4}}{3}}{2}}{1}$$
$endgroup$
After some work, I recalled the method from Brilliant.org. This is not a rigorous proof, but it offers some intuitive sense.
We will first prove the first equation. Note that
$$begin{align}
1+cfrac{1+cfrac{1+cfrac{1+cfrac{1+cfrac{1+vdots}{5}}{4}}{3}}{2}}{1}&=1+cfrac{1+cfrac{1+cfrac{1+cfrac{1+cfrac{1}{5}+cfrac{vdots}{5}}{4}}{3}}{2}}{1}\
&=1+cfrac{1+cfrac{1+cfrac{1+cfrac{1}{4}+cfrac{1}{4cdot5}+cfrac{vdots}{4cdot5}}{3}}{2}}{1}\
&=1+cfrac{1+cfrac{1+cfrac{1}{3}+cfrac{1}{3cdot4}+cfrac{1}{3cdot4cdot5}+cfrac{vdots}{3cdot4cdot5}}{2}}{1}\
&=1+cfrac{1+cfrac{1}{2}+cfrac{1}{2cdot3}+cfrac{1}{2cdot3cdot4}+cfrac{1}{2cdot3cdot4cdot5}+cfrac{vdots}{2cdot3cdot4cdot5}}{1}\
&=1+cfrac{1}{1!}+cfrac{1}{2!}+cfrac{1}{3!}+cfrac{1}{4!}+cfrac{1}{5!}+cdots\
&=color{red}etag{1}
end{align}$$
We will then proceed to the second equation.
$$begin{align}
1+cfrac{2+cfrac{3+cfrac{4+cfrac{5+cfrac{6+vdots}{5}}{4}}{3}}{2}}{1}&=1+cfrac{2+cfrac{3+cfrac{4+cfrac{5+cfrac{6}{5}+cfrac{vdots}{5}}{4}}{3}}{2}}{1}\
&=1+cfrac{2+cfrac{3+cfrac{4+cfrac{5}{4}+cfrac{6}{4cdot5}+cfrac{vdots}{4cdot5}}{3}}{2}}{1}\
&=1+cfrac{2+cfrac{3+cfrac{4}{3}+cfrac{5}{3cdot4}+cfrac{6}{3cdot4cdot5}+cfrac{vdots}{3cdot4cdot5}}{2}}{1}\
&=1+cfrac{2+cfrac{3}{2}+cfrac{4}{2cdot3}+cfrac{5}{2cdot3cdot4}+cfrac{6}{2cdot3cdot4cdot5}+cfrac{vdots}{2cdot3cdot4cdot5}}{1}\
&=1+cfrac{2}{1!}+cfrac{3}{2!}+cfrac{4}{3!}+cfrac{5}{4!}+cfrac{6}{5!}+cdots\
&=sum_{n=1}^{infty}cfrac{n^2}{n!}\
&=color{red}{2e}tag{2}
end{align}$$
Then, using the same logic, we have
$$sum_{k=1}^{infty}frac{k^{n+1}}{k!}=eB_{n+1}=1+cfrac{2^n+cfrac{3^n+cfrac{4^n+cfrac{vdots}{4}}{3}}{2}}{1}$$
answered Dec 22 '18 at 5:40
LarryLarry
2,55031131
2,55031131
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048990%2fhow-to-prove-that-sum-k-1-infty-frackn1k-eb-n1-1-cfrac2n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
See my answer here for the first equation.
$endgroup$
– JavaMan
Dec 21 '18 at 23:26
1
$begingroup$
It might be worth noting in the question that the $B_n$ are Bell numbers.
$endgroup$
– Carl Schildkraut
Dec 21 '18 at 23:27
$begingroup$
The last time I saw upwards continued fractions was...last millenium, I think. Is there any real advantage to upwards instead of downwards?
$endgroup$
– DonAntonio
Dec 21 '18 at 23:33
$begingroup$
@CarlSchildkraut: Ok, I will note that.
$endgroup$
– Larry
Dec 21 '18 at 23:53