Determinant of matrix formed from blocks of a $2 times 2$ block partitioned symplectic matrix.
$begingroup$
While working on a problem in quantum optics, I came across the following determinant of a complex matrix of size $n times n$ :
$$mathbb{G}=detleft[mathcal{U}_{11}^{}+mathcal{U}_{12}^{}mathcal{D}_{S}^{}right]$$
where $mathcal{U}_{xy}^{}$ are blocks of a $2 times 2$ block partitioned complex Symplectic matrix defined as,
$$begin{pmatrix}mathcal{U}_{11}^{} & mathcal{U}_{12}^{} \ mathcal{U}_{21}^{} & mathcal{U}_{22}^{}end{pmatrix}:=mathcal{U}_{2n times 2n}^{}=e_{}^{-mathcal{H}^{}Sigma_{}^{}}$$
with $mathcal{H}^{}Sigma_{}^{}$ being a complex Hamiltonian matrix expressed as a product of complex $2 times 2$ block partitioned symmetric matrix $$mathcal{H}^{}=begin{pmatrix}mathcal{A}_{n times n}^{}=mathcal{A}_{n times n}^{T} & mathcal{B}_{n times n}^{} \ mathcal{B}_{n times n}^{T} & mathcal{D}_{n times n}^{}=mathcal{D}_{n times n}^{T}end{pmatrix}$$
and the standard symplectic matrix
$$Sigma_{}^{}=begin{pmatrix}mathbb{O}_{n times n}^{} & mathbb{I}_{n times n}^{} \ -mathbb{I}_{n times n}^{} & mathbb{O}_{n times n}^{}end{pmatrix}.$$
Further $mathcal{D}_{S}^{}$ is a $n times n$ complex symmetric matrix and .
$mathbb{O}_{n times n}^{}$, $mathbb{I}_{n times n}^{}$ are respectively null and identity matrices of dimension $n times n$.
$mathbf{Question :}$ Is it possible to express $mathbb{G}$ in terms of expression involving traces or determinants of sums of products of $mathcal{A}_{n times n}^{}$, $mathcal{B}_{n times n}^{}$, $mathcal{D}_{n times n}^{}$, $mathcal{D}_{S}^{}$ matrices and eigenvalues of the symplectic matrix $mathcal{H}^{}Sigma_{}^{}$ without explicit computation of $mathcal{U}_{2n times 2n}^{}$, in an elegant general form? (I could do this for $n=2$ case using combination of Cayley–Hamilton theorem and Faddeev-Leverrier algorithm. For general case of $n$, I am not able to achieve this task. Without any rigorous reasoning, I suspect some elegant expression for $mathbb{G}$ can be given. Is this feasible?)
linear-algebra matrices symmetric-matrices symplectic-linear-algebra
$endgroup$
add a comment |
$begingroup$
While working on a problem in quantum optics, I came across the following determinant of a complex matrix of size $n times n$ :
$$mathbb{G}=detleft[mathcal{U}_{11}^{}+mathcal{U}_{12}^{}mathcal{D}_{S}^{}right]$$
where $mathcal{U}_{xy}^{}$ are blocks of a $2 times 2$ block partitioned complex Symplectic matrix defined as,
$$begin{pmatrix}mathcal{U}_{11}^{} & mathcal{U}_{12}^{} \ mathcal{U}_{21}^{} & mathcal{U}_{22}^{}end{pmatrix}:=mathcal{U}_{2n times 2n}^{}=e_{}^{-mathcal{H}^{}Sigma_{}^{}}$$
with $mathcal{H}^{}Sigma_{}^{}$ being a complex Hamiltonian matrix expressed as a product of complex $2 times 2$ block partitioned symmetric matrix $$mathcal{H}^{}=begin{pmatrix}mathcal{A}_{n times n}^{}=mathcal{A}_{n times n}^{T} & mathcal{B}_{n times n}^{} \ mathcal{B}_{n times n}^{T} & mathcal{D}_{n times n}^{}=mathcal{D}_{n times n}^{T}end{pmatrix}$$
and the standard symplectic matrix
$$Sigma_{}^{}=begin{pmatrix}mathbb{O}_{n times n}^{} & mathbb{I}_{n times n}^{} \ -mathbb{I}_{n times n}^{} & mathbb{O}_{n times n}^{}end{pmatrix}.$$
Further $mathcal{D}_{S}^{}$ is a $n times n$ complex symmetric matrix and .
$mathbb{O}_{n times n}^{}$, $mathbb{I}_{n times n}^{}$ are respectively null and identity matrices of dimension $n times n$.
$mathbf{Question :}$ Is it possible to express $mathbb{G}$ in terms of expression involving traces or determinants of sums of products of $mathcal{A}_{n times n}^{}$, $mathcal{B}_{n times n}^{}$, $mathcal{D}_{n times n}^{}$, $mathcal{D}_{S}^{}$ matrices and eigenvalues of the symplectic matrix $mathcal{H}^{}Sigma_{}^{}$ without explicit computation of $mathcal{U}_{2n times 2n}^{}$, in an elegant general form? (I could do this for $n=2$ case using combination of Cayley–Hamilton theorem and Faddeev-Leverrier algorithm. For general case of $n$, I am not able to achieve this task. Without any rigorous reasoning, I suspect some elegant expression for $mathbb{G}$ can be given. Is this feasible?)
linear-algebra matrices symmetric-matrices symplectic-linear-algebra
$endgroup$
$begingroup$
Shouldn't $mathbb{G}$ also depend on $mathcal{D}_{S}^{}$? Could you give your expression for $n=2$ so no one would waste time on rederiving it?
$endgroup$
– i9Fn
Dec 27 '18 at 17:13
$begingroup$
@i9Fn Thanks for pointing this out. I made appropriate edit regarding $mathcal{D}_{S}^{}$. Regarding $n=2$ case, I will add soon.
$endgroup$
– Sunyam
Dec 27 '18 at 17:20
add a comment |
$begingroup$
While working on a problem in quantum optics, I came across the following determinant of a complex matrix of size $n times n$ :
$$mathbb{G}=detleft[mathcal{U}_{11}^{}+mathcal{U}_{12}^{}mathcal{D}_{S}^{}right]$$
where $mathcal{U}_{xy}^{}$ are blocks of a $2 times 2$ block partitioned complex Symplectic matrix defined as,
$$begin{pmatrix}mathcal{U}_{11}^{} & mathcal{U}_{12}^{} \ mathcal{U}_{21}^{} & mathcal{U}_{22}^{}end{pmatrix}:=mathcal{U}_{2n times 2n}^{}=e_{}^{-mathcal{H}^{}Sigma_{}^{}}$$
with $mathcal{H}^{}Sigma_{}^{}$ being a complex Hamiltonian matrix expressed as a product of complex $2 times 2$ block partitioned symmetric matrix $$mathcal{H}^{}=begin{pmatrix}mathcal{A}_{n times n}^{}=mathcal{A}_{n times n}^{T} & mathcal{B}_{n times n}^{} \ mathcal{B}_{n times n}^{T} & mathcal{D}_{n times n}^{}=mathcal{D}_{n times n}^{T}end{pmatrix}$$
and the standard symplectic matrix
$$Sigma_{}^{}=begin{pmatrix}mathbb{O}_{n times n}^{} & mathbb{I}_{n times n}^{} \ -mathbb{I}_{n times n}^{} & mathbb{O}_{n times n}^{}end{pmatrix}.$$
Further $mathcal{D}_{S}^{}$ is a $n times n$ complex symmetric matrix and .
$mathbb{O}_{n times n}^{}$, $mathbb{I}_{n times n}^{}$ are respectively null and identity matrices of dimension $n times n$.
$mathbf{Question :}$ Is it possible to express $mathbb{G}$ in terms of expression involving traces or determinants of sums of products of $mathcal{A}_{n times n}^{}$, $mathcal{B}_{n times n}^{}$, $mathcal{D}_{n times n}^{}$, $mathcal{D}_{S}^{}$ matrices and eigenvalues of the symplectic matrix $mathcal{H}^{}Sigma_{}^{}$ without explicit computation of $mathcal{U}_{2n times 2n}^{}$, in an elegant general form? (I could do this for $n=2$ case using combination of Cayley–Hamilton theorem and Faddeev-Leverrier algorithm. For general case of $n$, I am not able to achieve this task. Without any rigorous reasoning, I suspect some elegant expression for $mathbb{G}$ can be given. Is this feasible?)
linear-algebra matrices symmetric-matrices symplectic-linear-algebra
$endgroup$
While working on a problem in quantum optics, I came across the following determinant of a complex matrix of size $n times n$ :
$$mathbb{G}=detleft[mathcal{U}_{11}^{}+mathcal{U}_{12}^{}mathcal{D}_{S}^{}right]$$
where $mathcal{U}_{xy}^{}$ are blocks of a $2 times 2$ block partitioned complex Symplectic matrix defined as,
$$begin{pmatrix}mathcal{U}_{11}^{} & mathcal{U}_{12}^{} \ mathcal{U}_{21}^{} & mathcal{U}_{22}^{}end{pmatrix}:=mathcal{U}_{2n times 2n}^{}=e_{}^{-mathcal{H}^{}Sigma_{}^{}}$$
with $mathcal{H}^{}Sigma_{}^{}$ being a complex Hamiltonian matrix expressed as a product of complex $2 times 2$ block partitioned symmetric matrix $$mathcal{H}^{}=begin{pmatrix}mathcal{A}_{n times n}^{}=mathcal{A}_{n times n}^{T} & mathcal{B}_{n times n}^{} \ mathcal{B}_{n times n}^{T} & mathcal{D}_{n times n}^{}=mathcal{D}_{n times n}^{T}end{pmatrix}$$
and the standard symplectic matrix
$$Sigma_{}^{}=begin{pmatrix}mathbb{O}_{n times n}^{} & mathbb{I}_{n times n}^{} \ -mathbb{I}_{n times n}^{} & mathbb{O}_{n times n}^{}end{pmatrix}.$$
Further $mathcal{D}_{S}^{}$ is a $n times n$ complex symmetric matrix and .
$mathbb{O}_{n times n}^{}$, $mathbb{I}_{n times n}^{}$ are respectively null and identity matrices of dimension $n times n$.
$mathbf{Question :}$ Is it possible to express $mathbb{G}$ in terms of expression involving traces or determinants of sums of products of $mathcal{A}_{n times n}^{}$, $mathcal{B}_{n times n}^{}$, $mathcal{D}_{n times n}^{}$, $mathcal{D}_{S}^{}$ matrices and eigenvalues of the symplectic matrix $mathcal{H}^{}Sigma_{}^{}$ without explicit computation of $mathcal{U}_{2n times 2n}^{}$, in an elegant general form? (I could do this for $n=2$ case using combination of Cayley–Hamilton theorem and Faddeev-Leverrier algorithm. For general case of $n$, I am not able to achieve this task. Without any rigorous reasoning, I suspect some elegant expression for $mathbb{G}$ can be given. Is this feasible?)
linear-algebra matrices symmetric-matrices symplectic-linear-algebra
linear-algebra matrices symmetric-matrices symplectic-linear-algebra
edited Dec 27 '18 at 19:59
Sunyam
asked Sep 27 '18 at 18:42
SunyamSunyam
167214
167214
$begingroup$
Shouldn't $mathbb{G}$ also depend on $mathcal{D}_{S}^{}$? Could you give your expression for $n=2$ so no one would waste time on rederiving it?
$endgroup$
– i9Fn
Dec 27 '18 at 17:13
$begingroup$
@i9Fn Thanks for pointing this out. I made appropriate edit regarding $mathcal{D}_{S}^{}$. Regarding $n=2$ case, I will add soon.
$endgroup$
– Sunyam
Dec 27 '18 at 17:20
add a comment |
$begingroup$
Shouldn't $mathbb{G}$ also depend on $mathcal{D}_{S}^{}$? Could you give your expression for $n=2$ so no one would waste time on rederiving it?
$endgroup$
– i9Fn
Dec 27 '18 at 17:13
$begingroup$
@i9Fn Thanks for pointing this out. I made appropriate edit regarding $mathcal{D}_{S}^{}$. Regarding $n=2$ case, I will add soon.
$endgroup$
– Sunyam
Dec 27 '18 at 17:20
$begingroup$
Shouldn't $mathbb{G}$ also depend on $mathcal{D}_{S}^{}$? Could you give your expression for $n=2$ so no one would waste time on rederiving it?
$endgroup$
– i9Fn
Dec 27 '18 at 17:13
$begingroup$
Shouldn't $mathbb{G}$ also depend on $mathcal{D}_{S}^{}$? Could you give your expression for $n=2$ so no one would waste time on rederiving it?
$endgroup$
– i9Fn
Dec 27 '18 at 17:13
$begingroup$
@i9Fn Thanks for pointing this out. I made appropriate edit regarding $mathcal{D}_{S}^{}$. Regarding $n=2$ case, I will add soon.
$endgroup$
– Sunyam
Dec 27 '18 at 17:20
$begingroup$
@i9Fn Thanks for pointing this out. I made appropriate edit regarding $mathcal{D}_{S}^{}$. Regarding $n=2$ case, I will add soon.
$endgroup$
– Sunyam
Dec 27 '18 at 17:20
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2933451%2fdeterminant-of-matrix-formed-from-blocks-of-a-2-times-2-block-partitioned-sym%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2933451%2fdeterminant-of-matrix-formed-from-blocks-of-a-2-times-2-block-partitioned-sym%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Shouldn't $mathbb{G}$ also depend on $mathcal{D}_{S}^{}$? Could you give your expression for $n=2$ so no one would waste time on rederiving it?
$endgroup$
– i9Fn
Dec 27 '18 at 17:13
$begingroup$
@i9Fn Thanks for pointing this out. I made appropriate edit regarding $mathcal{D}_{S}^{}$. Regarding $n=2$ case, I will add soon.
$endgroup$
– Sunyam
Dec 27 '18 at 17:20