Show that $ lim_{jtoinfty}prod_{n=j}^{mj}frac{pi}{2tan^{-1}(kn)}=m^{frac{2}{kpi}}$
$begingroup$
MathWorld states that
$displaystyle lim_{jtoinfty}prod_{n=j}^{2j}frac{pi}{2tan^{-1}n}=4^{frac{1}{pi}}$
(equation 130)
With a calculator, I find a general formula:
$displaystyle lim_{jtoinfty}prod_{n=j}^{mj}frac{pi}{2tan^{-1}(kn)}=m^{frac{2}{kpi}}$
But I have not found a proof for this. Any proof would be appreciated.
sequences-and-series
$endgroup$
add a comment |
$begingroup$
MathWorld states that
$displaystyle lim_{jtoinfty}prod_{n=j}^{2j}frac{pi}{2tan^{-1}n}=4^{frac{1}{pi}}$
(equation 130)
With a calculator, I find a general formula:
$displaystyle lim_{jtoinfty}prod_{n=j}^{mj}frac{pi}{2tan^{-1}(kn)}=m^{frac{2}{kpi}}$
But I have not found a proof for this. Any proof would be appreciated.
sequences-and-series
$endgroup$
add a comment |
$begingroup$
MathWorld states that
$displaystyle lim_{jtoinfty}prod_{n=j}^{2j}frac{pi}{2tan^{-1}n}=4^{frac{1}{pi}}$
(equation 130)
With a calculator, I find a general formula:
$displaystyle lim_{jtoinfty}prod_{n=j}^{mj}frac{pi}{2tan^{-1}(kn)}=m^{frac{2}{kpi}}$
But I have not found a proof for this. Any proof would be appreciated.
sequences-and-series
$endgroup$
MathWorld states that
$displaystyle lim_{jtoinfty}prod_{n=j}^{2j}frac{pi}{2tan^{-1}n}=4^{frac{1}{pi}}$
(equation 130)
With a calculator, I find a general formula:
$displaystyle lim_{jtoinfty}prod_{n=j}^{mj}frac{pi}{2tan^{-1}(kn)}=m^{frac{2}{kpi}}$
But I have not found a proof for this. Any proof would be appreciated.
sequences-and-series
sequences-and-series
edited Dec 21 '18 at 22:54
Larry
asked Aug 26 '18 at 23:15
LarryLarry
2,55031131
2,55031131
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
It is easier to analyze the behavior of the limit if you take logarithm. Indeed, write
$$ P_j = P_j(m,k) = prod_{n=j}^{mj} frac{pi}{2arctan(kn)} $$
for the expression inside the limit. Then using the relation $arctan(x) = frac{pi}{2} - arctan(frac{1}{x})$ which holds for $x > 0$, we find that
$$ logleft(frac{pi}{2arctan(x)}right)
= -logleft(1 - tfrac{2}{pi}arctanleft(tfrac{1}{x}right) right)
= tfrac{2}{pi x} + mathcal{O}left(x^{-2}right)
quad text{as} quad x to infty.$$
So it follows that
$$
log P_j
= sum_{n=j}^{mj} left( logfrac{pi}{2} - logarctan(kn)right)
= sum_{n=j}^{mj} left( frac{2}{pi kn} + mathcal{O}(n^{-2}) right).
$$
By noting that this is a Riemann sum with a vanishing error term, we realize that $log P_n$ converges to $int_{1}^{m} frac{2}{pi kx} , dx
= frac{2}{pi k}log m$ as $ntoinfty$. Exponentiation then yields $ P_n to m^{frac{2}{pi k}} $ as expected.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2895628%2fshow-that-lim-j-to-infty-prod-n-jmj-frac-pi2-tan-1kn-m-frac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It is easier to analyze the behavior of the limit if you take logarithm. Indeed, write
$$ P_j = P_j(m,k) = prod_{n=j}^{mj} frac{pi}{2arctan(kn)} $$
for the expression inside the limit. Then using the relation $arctan(x) = frac{pi}{2} - arctan(frac{1}{x})$ which holds for $x > 0$, we find that
$$ logleft(frac{pi}{2arctan(x)}right)
= -logleft(1 - tfrac{2}{pi}arctanleft(tfrac{1}{x}right) right)
= tfrac{2}{pi x} + mathcal{O}left(x^{-2}right)
quad text{as} quad x to infty.$$
So it follows that
$$
log P_j
= sum_{n=j}^{mj} left( logfrac{pi}{2} - logarctan(kn)right)
= sum_{n=j}^{mj} left( frac{2}{pi kn} + mathcal{O}(n^{-2}) right).
$$
By noting that this is a Riemann sum with a vanishing error term, we realize that $log P_n$ converges to $int_{1}^{m} frac{2}{pi kx} , dx
= frac{2}{pi k}log m$ as $ntoinfty$. Exponentiation then yields $ P_n to m^{frac{2}{pi k}} $ as expected.
$endgroup$
add a comment |
$begingroup$
It is easier to analyze the behavior of the limit if you take logarithm. Indeed, write
$$ P_j = P_j(m,k) = prod_{n=j}^{mj} frac{pi}{2arctan(kn)} $$
for the expression inside the limit. Then using the relation $arctan(x) = frac{pi}{2} - arctan(frac{1}{x})$ which holds for $x > 0$, we find that
$$ logleft(frac{pi}{2arctan(x)}right)
= -logleft(1 - tfrac{2}{pi}arctanleft(tfrac{1}{x}right) right)
= tfrac{2}{pi x} + mathcal{O}left(x^{-2}right)
quad text{as} quad x to infty.$$
So it follows that
$$
log P_j
= sum_{n=j}^{mj} left( logfrac{pi}{2} - logarctan(kn)right)
= sum_{n=j}^{mj} left( frac{2}{pi kn} + mathcal{O}(n^{-2}) right).
$$
By noting that this is a Riemann sum with a vanishing error term, we realize that $log P_n$ converges to $int_{1}^{m} frac{2}{pi kx} , dx
= frac{2}{pi k}log m$ as $ntoinfty$. Exponentiation then yields $ P_n to m^{frac{2}{pi k}} $ as expected.
$endgroup$
add a comment |
$begingroup$
It is easier to analyze the behavior of the limit if you take logarithm. Indeed, write
$$ P_j = P_j(m,k) = prod_{n=j}^{mj} frac{pi}{2arctan(kn)} $$
for the expression inside the limit. Then using the relation $arctan(x) = frac{pi}{2} - arctan(frac{1}{x})$ which holds for $x > 0$, we find that
$$ logleft(frac{pi}{2arctan(x)}right)
= -logleft(1 - tfrac{2}{pi}arctanleft(tfrac{1}{x}right) right)
= tfrac{2}{pi x} + mathcal{O}left(x^{-2}right)
quad text{as} quad x to infty.$$
So it follows that
$$
log P_j
= sum_{n=j}^{mj} left( logfrac{pi}{2} - logarctan(kn)right)
= sum_{n=j}^{mj} left( frac{2}{pi kn} + mathcal{O}(n^{-2}) right).
$$
By noting that this is a Riemann sum with a vanishing error term, we realize that $log P_n$ converges to $int_{1}^{m} frac{2}{pi kx} , dx
= frac{2}{pi k}log m$ as $ntoinfty$. Exponentiation then yields $ P_n to m^{frac{2}{pi k}} $ as expected.
$endgroup$
It is easier to analyze the behavior of the limit if you take logarithm. Indeed, write
$$ P_j = P_j(m,k) = prod_{n=j}^{mj} frac{pi}{2arctan(kn)} $$
for the expression inside the limit. Then using the relation $arctan(x) = frac{pi}{2} - arctan(frac{1}{x})$ which holds for $x > 0$, we find that
$$ logleft(frac{pi}{2arctan(x)}right)
= -logleft(1 - tfrac{2}{pi}arctanleft(tfrac{1}{x}right) right)
= tfrac{2}{pi x} + mathcal{O}left(x^{-2}right)
quad text{as} quad x to infty.$$
So it follows that
$$
log P_j
= sum_{n=j}^{mj} left( logfrac{pi}{2} - logarctan(kn)right)
= sum_{n=j}^{mj} left( frac{2}{pi kn} + mathcal{O}(n^{-2}) right).
$$
By noting that this is a Riemann sum with a vanishing error term, we realize that $log P_n$ converges to $int_{1}^{m} frac{2}{pi kx} , dx
= frac{2}{pi k}log m$ as $ntoinfty$. Exponentiation then yields $ P_n to m^{frac{2}{pi k}} $ as expected.
answered Aug 26 '18 at 23:37
Sangchul LeeSangchul Lee
96.6k12173283
96.6k12173283
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2895628%2fshow-that-lim-j-to-infty-prod-n-jmj-frac-pi2-tan-1kn-m-frac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown