Evaluate $int_{2}^{4}frac{sqrt{ln(9-x)} dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}$ [duplicate]












-1















This question already has an answer here:




  • Integrating $ int_2^4 frac{ sqrt{ln(9-x)} }{ sqrt{ln(9-x)}+sqrt{ln(x+3)} } dx. $

    2 answers




Help with the evaluation of this definite integral. I don't know where to start.



So we have :$frac{sqrt{ln(9-x)}}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=frac{ln(9-x)-sqrt{ln(9-x)}sqrt{ln(x+3)} }{ln(9-x)-ln(x+3)}$ What's now?










share|cite|improve this question















marked as duplicate by Nosrati, Saad, lab bhattacharjee calculus
Users with the  calculus badge can single-handedly close calculus questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 23 at 18:51


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.











  • 1




    Use math.stackexchange.com/questions/439851/…
    – lab bhattacharjee
    Nov 23 at 14:30






  • 1




    math.stackexchange.com/questions/578957/…
    – lab bhattacharjee
    Nov 23 at 14:33






  • 1




    Also math.stackexchange.com/questions/957510
    – Nosrati
    Nov 23 at 14:36






  • 1




    math.stackexchange.com/questions/1073120/…
    – lab bhattacharjee
    Nov 23 at 14:36
















-1















This question already has an answer here:




  • Integrating $ int_2^4 frac{ sqrt{ln(9-x)} }{ sqrt{ln(9-x)}+sqrt{ln(x+3)} } dx. $

    2 answers




Help with the evaluation of this definite integral. I don't know where to start.



So we have :$frac{sqrt{ln(9-x)}}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=frac{ln(9-x)-sqrt{ln(9-x)}sqrt{ln(x+3)} }{ln(9-x)-ln(x+3)}$ What's now?










share|cite|improve this question















marked as duplicate by Nosrati, Saad, lab bhattacharjee calculus
Users with the  calculus badge can single-handedly close calculus questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 23 at 18:51


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.











  • 1




    Use math.stackexchange.com/questions/439851/…
    – lab bhattacharjee
    Nov 23 at 14:30






  • 1




    math.stackexchange.com/questions/578957/…
    – lab bhattacharjee
    Nov 23 at 14:33






  • 1




    Also math.stackexchange.com/questions/957510
    – Nosrati
    Nov 23 at 14:36






  • 1




    math.stackexchange.com/questions/1073120/…
    – lab bhattacharjee
    Nov 23 at 14:36














-1












-1








-1








This question already has an answer here:




  • Integrating $ int_2^4 frac{ sqrt{ln(9-x)} }{ sqrt{ln(9-x)}+sqrt{ln(x+3)} } dx. $

    2 answers




Help with the evaluation of this definite integral. I don't know where to start.



So we have :$frac{sqrt{ln(9-x)}}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=frac{ln(9-x)-sqrt{ln(9-x)}sqrt{ln(x+3)} }{ln(9-x)-ln(x+3)}$ What's now?










share|cite|improve this question
















This question already has an answer here:




  • Integrating $ int_2^4 frac{ sqrt{ln(9-x)} }{ sqrt{ln(9-x)}+sqrt{ln(x+3)} } dx. $

    2 answers




Help with the evaluation of this definite integral. I don't know where to start.



So we have :$frac{sqrt{ln(9-x)}}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=frac{ln(9-x)-sqrt{ln(9-x)}sqrt{ln(x+3)} }{ln(9-x)-ln(x+3)}$ What's now?





This question already has an answer here:




  • Integrating $ int_2^4 frac{ sqrt{ln(9-x)} }{ sqrt{ln(9-x)}+sqrt{ln(x+3)} } dx. $

    2 answers








calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 23 at 14:30









user376343

2,7782822




2,7782822










asked Nov 23 at 14:28









mathnoob

1,759422




1,759422




marked as duplicate by Nosrati, Saad, lab bhattacharjee calculus
Users with the  calculus badge can single-handedly close calculus questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 23 at 18:51


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.






marked as duplicate by Nosrati, Saad, lab bhattacharjee calculus
Users with the  calculus badge can single-handedly close calculus questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 23 at 18:51


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.










  • 1




    Use math.stackexchange.com/questions/439851/…
    – lab bhattacharjee
    Nov 23 at 14:30






  • 1




    math.stackexchange.com/questions/578957/…
    – lab bhattacharjee
    Nov 23 at 14:33






  • 1




    Also math.stackexchange.com/questions/957510
    – Nosrati
    Nov 23 at 14:36






  • 1




    math.stackexchange.com/questions/1073120/…
    – lab bhattacharjee
    Nov 23 at 14:36














  • 1




    Use math.stackexchange.com/questions/439851/…
    – lab bhattacharjee
    Nov 23 at 14:30






  • 1




    math.stackexchange.com/questions/578957/…
    – lab bhattacharjee
    Nov 23 at 14:33






  • 1




    Also math.stackexchange.com/questions/957510
    – Nosrati
    Nov 23 at 14:36






  • 1




    math.stackexchange.com/questions/1073120/…
    – lab bhattacharjee
    Nov 23 at 14:36








1




1




Use math.stackexchange.com/questions/439851/…
– lab bhattacharjee
Nov 23 at 14:30




Use math.stackexchange.com/questions/439851/…
– lab bhattacharjee
Nov 23 at 14:30




1




1




math.stackexchange.com/questions/578957/…
– lab bhattacharjee
Nov 23 at 14:33




math.stackexchange.com/questions/578957/…
– lab bhattacharjee
Nov 23 at 14:33




1




1




Also math.stackexchange.com/questions/957510
– Nosrati
Nov 23 at 14:36




Also math.stackexchange.com/questions/957510
– Nosrati
Nov 23 at 14:36




1




1




math.stackexchange.com/questions/1073120/…
– lab bhattacharjee
Nov 23 at 14:36




math.stackexchange.com/questions/1073120/…
– lab bhattacharjee
Nov 23 at 14:36










1 Answer
1






active

oldest

votes


















0














$displaystyle int_{2}^{4}frac{sqrt{ln(9-x)} dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=I=int_{2}^{4}frac{sqrt{ln(x+3)} dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}$



$displaystyleimplies 2I=int_{2}^{4}frac{sqrt{ln(9-x)}+sqrt{ln(x+3)} :dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=int_{2}^{4} dx=2implies I=1.$



$left(text{Using }:displaystyleint_a^bf(x)dx=int_a^bf(a+b-x)dxright)$.






share|cite|improve this answer




























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    $displaystyle int_{2}^{4}frac{sqrt{ln(9-x)} dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=I=int_{2}^{4}frac{sqrt{ln(x+3)} dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}$



    $displaystyleimplies 2I=int_{2}^{4}frac{sqrt{ln(9-x)}+sqrt{ln(x+3)} :dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=int_{2}^{4} dx=2implies I=1.$



    $left(text{Using }:displaystyleint_a^bf(x)dx=int_a^bf(a+b-x)dxright)$.






    share|cite|improve this answer


























      0














      $displaystyle int_{2}^{4}frac{sqrt{ln(9-x)} dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=I=int_{2}^{4}frac{sqrt{ln(x+3)} dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}$



      $displaystyleimplies 2I=int_{2}^{4}frac{sqrt{ln(9-x)}+sqrt{ln(x+3)} :dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=int_{2}^{4} dx=2implies I=1.$



      $left(text{Using }:displaystyleint_a^bf(x)dx=int_a^bf(a+b-x)dxright)$.






      share|cite|improve this answer
























        0












        0








        0






        $displaystyle int_{2}^{4}frac{sqrt{ln(9-x)} dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=I=int_{2}^{4}frac{sqrt{ln(x+3)} dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}$



        $displaystyleimplies 2I=int_{2}^{4}frac{sqrt{ln(9-x)}+sqrt{ln(x+3)} :dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=int_{2}^{4} dx=2implies I=1.$



        $left(text{Using }:displaystyleint_a^bf(x)dx=int_a^bf(a+b-x)dxright)$.






        share|cite|improve this answer












        $displaystyle int_{2}^{4}frac{sqrt{ln(9-x)} dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=I=int_{2}^{4}frac{sqrt{ln(x+3)} dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}$



        $displaystyleimplies 2I=int_{2}^{4}frac{sqrt{ln(9-x)}+sqrt{ln(x+3)} :dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=int_{2}^{4} dx=2implies I=1.$



        $left(text{Using }:displaystyleint_a^bf(x)dx=int_a^bf(a+b-x)dxright)$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 23 at 15:34









        Yadati Kiran

        1,694519




        1,694519















            Popular posts from this blog

            Plaza Victoria

            Puebla de Zaragoza

            Musa