Evaluate $int_{2}^{4}frac{sqrt{ln(9-x)} dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}$ [duplicate]












-1















This question already has an answer here:




  • Integrating $ int_2^4 frac{ sqrt{ln(9-x)} }{ sqrt{ln(9-x)}+sqrt{ln(x+3)} } dx. $

    2 answers




Help with the evaluation of this definite integral. I don't know where to start.



So we have :$frac{sqrt{ln(9-x)}}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=frac{ln(9-x)-sqrt{ln(9-x)}sqrt{ln(x+3)} }{ln(9-x)-ln(x+3)}$ What's now?










share|cite|improve this question















marked as duplicate by Nosrati, Saad, lab bhattacharjee calculus
Users with the  calculus badge can single-handedly close calculus questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 23 at 18:51


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.











  • 1




    Use math.stackexchange.com/questions/439851/…
    – lab bhattacharjee
    Nov 23 at 14:30






  • 1




    math.stackexchange.com/questions/578957/…
    – lab bhattacharjee
    Nov 23 at 14:33






  • 1




    Also math.stackexchange.com/questions/957510
    – Nosrati
    Nov 23 at 14:36






  • 1




    math.stackexchange.com/questions/1073120/…
    – lab bhattacharjee
    Nov 23 at 14:36
















-1















This question already has an answer here:




  • Integrating $ int_2^4 frac{ sqrt{ln(9-x)} }{ sqrt{ln(9-x)}+sqrt{ln(x+3)} } dx. $

    2 answers




Help with the evaluation of this definite integral. I don't know where to start.



So we have :$frac{sqrt{ln(9-x)}}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=frac{ln(9-x)-sqrt{ln(9-x)}sqrt{ln(x+3)} }{ln(9-x)-ln(x+3)}$ What's now?










share|cite|improve this question















marked as duplicate by Nosrati, Saad, lab bhattacharjee calculus
Users with the  calculus badge can single-handedly close calculus questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 23 at 18:51


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.











  • 1




    Use math.stackexchange.com/questions/439851/…
    – lab bhattacharjee
    Nov 23 at 14:30






  • 1




    math.stackexchange.com/questions/578957/…
    – lab bhattacharjee
    Nov 23 at 14:33






  • 1




    Also math.stackexchange.com/questions/957510
    – Nosrati
    Nov 23 at 14:36






  • 1




    math.stackexchange.com/questions/1073120/…
    – lab bhattacharjee
    Nov 23 at 14:36














-1












-1








-1








This question already has an answer here:




  • Integrating $ int_2^4 frac{ sqrt{ln(9-x)} }{ sqrt{ln(9-x)}+sqrt{ln(x+3)} } dx. $

    2 answers




Help with the evaluation of this definite integral. I don't know where to start.



So we have :$frac{sqrt{ln(9-x)}}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=frac{ln(9-x)-sqrt{ln(9-x)}sqrt{ln(x+3)} }{ln(9-x)-ln(x+3)}$ What's now?










share|cite|improve this question
















This question already has an answer here:




  • Integrating $ int_2^4 frac{ sqrt{ln(9-x)} }{ sqrt{ln(9-x)}+sqrt{ln(x+3)} } dx. $

    2 answers




Help with the evaluation of this definite integral. I don't know where to start.



So we have :$frac{sqrt{ln(9-x)}}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=frac{ln(9-x)-sqrt{ln(9-x)}sqrt{ln(x+3)} }{ln(9-x)-ln(x+3)}$ What's now?





This question already has an answer here:




  • Integrating $ int_2^4 frac{ sqrt{ln(9-x)} }{ sqrt{ln(9-x)}+sqrt{ln(x+3)} } dx. $

    2 answers








calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 23 at 14:30









user376343

2,7782822




2,7782822










asked Nov 23 at 14:28









mathnoob

1,759422




1,759422




marked as duplicate by Nosrati, Saad, lab bhattacharjee calculus
Users with the  calculus badge can single-handedly close calculus questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 23 at 18:51


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.






marked as duplicate by Nosrati, Saad, lab bhattacharjee calculus
Users with the  calculus badge can single-handedly close calculus questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Nov 23 at 18:51


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.










  • 1




    Use math.stackexchange.com/questions/439851/…
    – lab bhattacharjee
    Nov 23 at 14:30






  • 1




    math.stackexchange.com/questions/578957/…
    – lab bhattacharjee
    Nov 23 at 14:33






  • 1




    Also math.stackexchange.com/questions/957510
    – Nosrati
    Nov 23 at 14:36






  • 1




    math.stackexchange.com/questions/1073120/…
    – lab bhattacharjee
    Nov 23 at 14:36














  • 1




    Use math.stackexchange.com/questions/439851/…
    – lab bhattacharjee
    Nov 23 at 14:30






  • 1




    math.stackexchange.com/questions/578957/…
    – lab bhattacharjee
    Nov 23 at 14:33






  • 1




    Also math.stackexchange.com/questions/957510
    – Nosrati
    Nov 23 at 14:36






  • 1




    math.stackexchange.com/questions/1073120/…
    – lab bhattacharjee
    Nov 23 at 14:36








1




1




Use math.stackexchange.com/questions/439851/…
– lab bhattacharjee
Nov 23 at 14:30




Use math.stackexchange.com/questions/439851/…
– lab bhattacharjee
Nov 23 at 14:30




1




1




math.stackexchange.com/questions/578957/…
– lab bhattacharjee
Nov 23 at 14:33




math.stackexchange.com/questions/578957/…
– lab bhattacharjee
Nov 23 at 14:33




1




1




Also math.stackexchange.com/questions/957510
– Nosrati
Nov 23 at 14:36




Also math.stackexchange.com/questions/957510
– Nosrati
Nov 23 at 14:36




1




1




math.stackexchange.com/questions/1073120/…
– lab bhattacharjee
Nov 23 at 14:36




math.stackexchange.com/questions/1073120/…
– lab bhattacharjee
Nov 23 at 14:36










1 Answer
1






active

oldest

votes


















0














$displaystyle int_{2}^{4}frac{sqrt{ln(9-x)} dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=I=int_{2}^{4}frac{sqrt{ln(x+3)} dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}$



$displaystyleimplies 2I=int_{2}^{4}frac{sqrt{ln(9-x)}+sqrt{ln(x+3)} :dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=int_{2}^{4} dx=2implies I=1.$



$left(text{Using }:displaystyleint_a^bf(x)dx=int_a^bf(a+b-x)dxright)$.






share|cite|improve this answer




























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    $displaystyle int_{2}^{4}frac{sqrt{ln(9-x)} dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=I=int_{2}^{4}frac{sqrt{ln(x+3)} dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}$



    $displaystyleimplies 2I=int_{2}^{4}frac{sqrt{ln(9-x)}+sqrt{ln(x+3)} :dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=int_{2}^{4} dx=2implies I=1.$



    $left(text{Using }:displaystyleint_a^bf(x)dx=int_a^bf(a+b-x)dxright)$.






    share|cite|improve this answer


























      0














      $displaystyle int_{2}^{4}frac{sqrt{ln(9-x)} dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=I=int_{2}^{4}frac{sqrt{ln(x+3)} dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}$



      $displaystyleimplies 2I=int_{2}^{4}frac{sqrt{ln(9-x)}+sqrt{ln(x+3)} :dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=int_{2}^{4} dx=2implies I=1.$



      $left(text{Using }:displaystyleint_a^bf(x)dx=int_a^bf(a+b-x)dxright)$.






      share|cite|improve this answer
























        0












        0








        0






        $displaystyle int_{2}^{4}frac{sqrt{ln(9-x)} dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=I=int_{2}^{4}frac{sqrt{ln(x+3)} dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}$



        $displaystyleimplies 2I=int_{2}^{4}frac{sqrt{ln(9-x)}+sqrt{ln(x+3)} :dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=int_{2}^{4} dx=2implies I=1.$



        $left(text{Using }:displaystyleint_a^bf(x)dx=int_a^bf(a+b-x)dxright)$.






        share|cite|improve this answer












        $displaystyle int_{2}^{4}frac{sqrt{ln(9-x)} dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=I=int_{2}^{4}frac{sqrt{ln(x+3)} dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}$



        $displaystyleimplies 2I=int_{2}^{4}frac{sqrt{ln(9-x)}+sqrt{ln(x+3)} :dx}{sqrt{ln(9-x)}+sqrt{ln(x+3)}}=int_{2}^{4} dx=2implies I=1.$



        $left(text{Using }:displaystyleint_a^bf(x)dx=int_a^bf(a+b-x)dxright)$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 23 at 15:34









        Yadati Kiran

        1,694519




        1,694519















            Popular posts from this blog

            Plaza Victoria

            How to extract passwords from Mobaxterm Free Version

            IC on Digikey is 5x more expensive than board containing same IC on Alibaba: How? [on hold]