Interesting proofs of this sum












1














So I was asked to solve the following sum using Fourier Series:



$$sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)}$$



I decided to try splitting it up into two sums (for even and odd $n$) in the hopes that it would telescope and be easier to evaluate. It did not, but I was able to salvage my work by employing the arctangent Taylor Series. The purpose of this post is twofold: to post a rather unusual approach and to ask others how they might do this problem more easily/differently.



First I noted



$$sum_{ninBbb N}frac{(-1)^n}{4n^2-1}=sum_{ninmathbb N}frac{1}{16n^2-1}^{(2)}-sum_{ninmathbb N}frac{1}{4(2n-1)^2-1}^{(3)}$$



Using partial fractions of the first sum on the RHS:



$$(2);sum_{ninmathbb N}frac{1}{16n^2-1}=frac{1}{2}sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)$$



Using partial fractions on the second sum on the RHS:



$$(3);sum_{ninmathbb N}frac{1}{4(2n-1)^2-1}=frac{1}{2}sum_{ninmathbb N}left(frac{1}{4n-3}-frac{1}{4n-1}right)=-frac{1}{2}+frac{1}{2}sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)$$



Combining results for the even and odd sums from the RHS:



$$sum_{ninmathbb N}frac{1}{16n^2-1}-sum_{ninmathbb N}frac{1}{4(2n-1)^2-1}=-frac{1}{2}+sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)^{(4)}$$



Then I saw that the rightmost sum was the following:



$$sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)=sum_{n=2}^inftyfrac{(-1)^{n}}{2n-1}^{(5)}$$



Note the Taylor series for arctangent:



$$text{atan}(x)=sum_{n=1}^inftyfrac{(-1)^{n-1}x^n}{2n-1}$$



Letting $x=1$:



$$text{atan}(1)=frac{pi}{4}=sum_{n=1}^inftyfrac{(-1)^{n+1}}{2n-1}$$



Accounting for index and sign difference, we see that



$$(5);sum_{n=2}^inftyfrac{(-1)^{n}}{2n-1}=1-frac{pi}{4}$$



And finally, from the $-1/2$ term in $(4)$, we see that



$$(1);sum_{ninBbb N}frac{(-1)^n}{4n^2-1}=frac{2-pi}{4}$$










share|cite|improve this question




















  • 1




    and what is your question?
    – Masacroso
    Nov 13 at 8:31






  • 3




    @Masacroso MSE has explicitly said that asking your own question and answering with an interesting result is well-received, albeit uncommon. I also asked if anyone else had nice approaches to this specific question
    – Lanier Freeman
    Nov 13 at 8:43
















1














So I was asked to solve the following sum using Fourier Series:



$$sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)}$$



I decided to try splitting it up into two sums (for even and odd $n$) in the hopes that it would telescope and be easier to evaluate. It did not, but I was able to salvage my work by employing the arctangent Taylor Series. The purpose of this post is twofold: to post a rather unusual approach and to ask others how they might do this problem more easily/differently.



First I noted



$$sum_{ninBbb N}frac{(-1)^n}{4n^2-1}=sum_{ninmathbb N}frac{1}{16n^2-1}^{(2)}-sum_{ninmathbb N}frac{1}{4(2n-1)^2-1}^{(3)}$$



Using partial fractions of the first sum on the RHS:



$$(2);sum_{ninmathbb N}frac{1}{16n^2-1}=frac{1}{2}sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)$$



Using partial fractions on the second sum on the RHS:



$$(3);sum_{ninmathbb N}frac{1}{4(2n-1)^2-1}=frac{1}{2}sum_{ninmathbb N}left(frac{1}{4n-3}-frac{1}{4n-1}right)=-frac{1}{2}+frac{1}{2}sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)$$



Combining results for the even and odd sums from the RHS:



$$sum_{ninmathbb N}frac{1}{16n^2-1}-sum_{ninmathbb N}frac{1}{4(2n-1)^2-1}=-frac{1}{2}+sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)^{(4)}$$



Then I saw that the rightmost sum was the following:



$$sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)=sum_{n=2}^inftyfrac{(-1)^{n}}{2n-1}^{(5)}$$



Note the Taylor series for arctangent:



$$text{atan}(x)=sum_{n=1}^inftyfrac{(-1)^{n-1}x^n}{2n-1}$$



Letting $x=1$:



$$text{atan}(1)=frac{pi}{4}=sum_{n=1}^inftyfrac{(-1)^{n+1}}{2n-1}$$



Accounting for index and sign difference, we see that



$$(5);sum_{n=2}^inftyfrac{(-1)^{n}}{2n-1}=1-frac{pi}{4}$$



And finally, from the $-1/2$ term in $(4)$, we see that



$$(1);sum_{ninBbb N}frac{(-1)^n}{4n^2-1}=frac{2-pi}{4}$$










share|cite|improve this question




















  • 1




    and what is your question?
    – Masacroso
    Nov 13 at 8:31






  • 3




    @Masacroso MSE has explicitly said that asking your own question and answering with an interesting result is well-received, albeit uncommon. I also asked if anyone else had nice approaches to this specific question
    – Lanier Freeman
    Nov 13 at 8:43














1












1








1







So I was asked to solve the following sum using Fourier Series:



$$sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)}$$



I decided to try splitting it up into two sums (for even and odd $n$) in the hopes that it would telescope and be easier to evaluate. It did not, but I was able to salvage my work by employing the arctangent Taylor Series. The purpose of this post is twofold: to post a rather unusual approach and to ask others how they might do this problem more easily/differently.



First I noted



$$sum_{ninBbb N}frac{(-1)^n}{4n^2-1}=sum_{ninmathbb N}frac{1}{16n^2-1}^{(2)}-sum_{ninmathbb N}frac{1}{4(2n-1)^2-1}^{(3)}$$



Using partial fractions of the first sum on the RHS:



$$(2);sum_{ninmathbb N}frac{1}{16n^2-1}=frac{1}{2}sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)$$



Using partial fractions on the second sum on the RHS:



$$(3);sum_{ninmathbb N}frac{1}{4(2n-1)^2-1}=frac{1}{2}sum_{ninmathbb N}left(frac{1}{4n-3}-frac{1}{4n-1}right)=-frac{1}{2}+frac{1}{2}sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)$$



Combining results for the even and odd sums from the RHS:



$$sum_{ninmathbb N}frac{1}{16n^2-1}-sum_{ninmathbb N}frac{1}{4(2n-1)^2-1}=-frac{1}{2}+sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)^{(4)}$$



Then I saw that the rightmost sum was the following:



$$sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)=sum_{n=2}^inftyfrac{(-1)^{n}}{2n-1}^{(5)}$$



Note the Taylor series for arctangent:



$$text{atan}(x)=sum_{n=1}^inftyfrac{(-1)^{n-1}x^n}{2n-1}$$



Letting $x=1$:



$$text{atan}(1)=frac{pi}{4}=sum_{n=1}^inftyfrac{(-1)^{n+1}}{2n-1}$$



Accounting for index and sign difference, we see that



$$(5);sum_{n=2}^inftyfrac{(-1)^{n}}{2n-1}=1-frac{pi}{4}$$



And finally, from the $-1/2$ term in $(4)$, we see that



$$(1);sum_{ninBbb N}frac{(-1)^n}{4n^2-1}=frac{2-pi}{4}$$










share|cite|improve this question















So I was asked to solve the following sum using Fourier Series:



$$sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)}$$



I decided to try splitting it up into two sums (for even and odd $n$) in the hopes that it would telescope and be easier to evaluate. It did not, but I was able to salvage my work by employing the arctangent Taylor Series. The purpose of this post is twofold: to post a rather unusual approach and to ask others how they might do this problem more easily/differently.



First I noted



$$sum_{ninBbb N}frac{(-1)^n}{4n^2-1}=sum_{ninmathbb N}frac{1}{16n^2-1}^{(2)}-sum_{ninmathbb N}frac{1}{4(2n-1)^2-1}^{(3)}$$



Using partial fractions of the first sum on the RHS:



$$(2);sum_{ninmathbb N}frac{1}{16n^2-1}=frac{1}{2}sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)$$



Using partial fractions on the second sum on the RHS:



$$(3);sum_{ninmathbb N}frac{1}{4(2n-1)^2-1}=frac{1}{2}sum_{ninmathbb N}left(frac{1}{4n-3}-frac{1}{4n-1}right)=-frac{1}{2}+frac{1}{2}sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)$$



Combining results for the even and odd sums from the RHS:



$$sum_{ninmathbb N}frac{1}{16n^2-1}-sum_{ninmathbb N}frac{1}{4(2n-1)^2-1}=-frac{1}{2}+sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)^{(4)}$$



Then I saw that the rightmost sum was the following:



$$sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)=sum_{n=2}^inftyfrac{(-1)^{n}}{2n-1}^{(5)}$$



Note the Taylor series for arctangent:



$$text{atan}(x)=sum_{n=1}^inftyfrac{(-1)^{n-1}x^n}{2n-1}$$



Letting $x=1$:



$$text{atan}(1)=frac{pi}{4}=sum_{n=1}^inftyfrac{(-1)^{n+1}}{2n-1}$$



Accounting for index and sign difference, we see that



$$(5);sum_{n=2}^inftyfrac{(-1)^{n}}{2n-1}=1-frac{pi}{4}$$



And finally, from the $-1/2$ term in $(4)$, we see that



$$(1);sum_{ninBbb N}frac{(-1)^n}{4n^2-1}=frac{2-pi}{4}$$







summation fourier-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 13 at 21:51

























asked Nov 13 at 8:16









Lanier Freeman

2,837927




2,837927








  • 1




    and what is your question?
    – Masacroso
    Nov 13 at 8:31






  • 3




    @Masacroso MSE has explicitly said that asking your own question and answering with an interesting result is well-received, albeit uncommon. I also asked if anyone else had nice approaches to this specific question
    – Lanier Freeman
    Nov 13 at 8:43














  • 1




    and what is your question?
    – Masacroso
    Nov 13 at 8:31






  • 3




    @Masacroso MSE has explicitly said that asking your own question and answering with an interesting result is well-received, albeit uncommon. I also asked if anyone else had nice approaches to this specific question
    – Lanier Freeman
    Nov 13 at 8:43








1




1




and what is your question?
– Masacroso
Nov 13 at 8:31




and what is your question?
– Masacroso
Nov 13 at 8:31




3




3




@Masacroso MSE has explicitly said that asking your own question and answering with an interesting result is well-received, albeit uncommon. I also asked if anyone else had nice approaches to this specific question
– Lanier Freeman
Nov 13 at 8:43




@Masacroso MSE has explicitly said that asking your own question and answering with an interesting result is well-received, albeit uncommon. I also asked if anyone else had nice approaches to this specific question
– Lanier Freeman
Nov 13 at 8:43










3 Answers
3






active

oldest

votes


















2














I would go about it in a similar way like you do, just shorter, as follows:



By partial fractions,



$$
frac{1}{4n^2-1} = frac12 left(frac{1}{2n-1} - frac{1}{2n+1} right)
$$

So
$$
sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)} = frac12 sum_{ninBbb N} left(frac{(-1)^n}{2n-1} - frac{(-1)^n}{2(n+1)-1} right)
$$

and by shifting the sum index
$$
sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)} = frac12 left(
sum_{n=1}^infty frac{(-1)^n}{2n-1} + sum_{n=2}^infty frac{(-1)^n}{2n-1} right)\
= frac12 left( 1 -
2 sum_{n=1}^infty frac{(-1)^{n+1}}{2n-1} right) = frac{2-pi}{4}
$$

where in the last line the $arctan$ result was used.






share|cite|improve this answer





























    3














    Consider a $2pi$-periodic function $f:Bbb{R}toBbb{C}$ whose values on $(-pi,pi]$ are given by $f(x)=operatorname{sign}xsinalpha x$. Then, $f$ is even so it has a Fourier series of the form
    $$f(x)=frac{a_0}{2}+sum_{n=1}^infty a_ncos nx,$$
    where $a_n=frac1piint_{-pi}^pi f(x)cos nx dx=frac{2}{pi}int_0^pi f(x)cos nx dx$ (recalling that $f$ is even). Because $2sinalpha xcos nx=sin(n+alpha)x-sin(n-alpha)x$, we conclude that
    $$a_n=begin{cases}frac{1-(-1)^ncosalpha pi}{pi}left(frac{1}{n+alpha}-frac{1}{n-alpha}right)&text{if }nneq pmalpha,\ 0&text{if }n=pmalpha.end{cases}$$



    Take $alpha=1/2$, so that
    $$a_n=frac{1-(-1)^ncosfrac{pi}{2}}{pi}left(frac{1}{n+1/2}-frac{1}{n-1/2}right)=-frac{4}{pi(4n^2-1)}.$$
    That is
    $$operatorname{sign}xsinfrac{x}{2}=frac{a_0}{2}+sum_{n=1}^infty a_ncos nx=frac2pi-frac4pisum_{n=1}^inftyfrac{1}{4n^2-1}cos nx$$
    for $-pi< xle pi$. Plugging in $x=pi$ (note that $f$ is continuous at $x=pi$, so we don't have to worry about jumps over there), we have
    $$1=operatorname{sign}{pi}sinfrac{pi}{2}=frac2pi-frac4pisum_{n=1}^inftyfrac{cos npi}{4n^2-1}=frac2pi-frac4pisum_{n=1}^inftyfrac{(-1)^n}{4n^2-1}.$$
    So $sum_{n=1}^inftyfrac{(-1)^n}{4n^2-1}=frac{2-pi}{4}$.





    Similarly, consider a $2pi$-periodic function $g:Bbb{R}toBbb{C}$ whose values on $(-pi,pi]$ are given by $g(x)=operatorname{sign}xcosalpha x$. Then, $g$ is odd so it has a Fourier series of the form
    $$g(x)=sum_{n=1}^infty b_nsin nx,$$
    where $b_n=frac1piint_{-pi}^pi g(x)sin nx dx=frac{2}{pi}int_0^pi g(x)sin nx dx$ (recalling that $g$ is odd). Because $2cosalpha xsin nx=sin(n+alpha)x+sin(n-alpha)x$, we conclude that
    $$b_n=begin{cases}frac{1-(-1)^ncosalpha pi}{pi}left(frac{1}{n+alpha}+frac{1}{n-alpha}right)&text{if }nneq pmalpha,\ 0&text{if }n=pmalpha.end{cases}$$






    share|cite|improve this answer





























      2














      Here is my attempt to follow the instruction to use Fourier series. First, as you did, I rewrite the sum as
      $$sum_{n=1}^infty,frac{(-1)^n}{4n^2-1}=sum_{n=1}^infty,frac{(-1)^n}{2}left(frac{1}{2n-1}-frac{1}{2n+1}right)=frac{1}{2}+sum_{n=1}^infty,frac{(-1)^n}{2n-1},.tag{*}$$



      Let $f:mathbb{R}tomathbb{R}$ be the periodic function with period $2pi$ defined by
      $$f(x):=begin{cases}+1&text{if }xin(0,+pi),,\0&text{if }xin{-pi,0,+pi},,\-1&text{if }xin(-pi,0),.end{cases}$$
      Then, as $f$ is an odd function, $f$ has a Fourier sine-series:
      $$f(x)=sum_{k=1}^infty,b_k,sin(kx)$$
      for some real numbers $b_1,b_2,b_3,ldots$. We see that
      $$begin{align}b_k&=frac{1}{pi},int_{-pi}^{+pi},sin(kx),f(x),text{d}x=frac{2}{pi},int_0^pi,sin(kx),text{d}x
      \&=frac{2}{pi,k},Big.big(-cos(kx)big)Big|_{x=0}^{x=pi}=frac{2,big(1-(-1)^kbig)}{pi,k}
      end{align}$$

      for all $k=1,2,3,ldots$.
      Consequently,
      $$f(x)=sum_{k=1}^infty,frac{2,big(1-(-1)^kbig)}{pi,k},sin(kx)=frac{4}{pi},sum_{n=1}^infty,frac{sinbig((2n-1)xbig)}{2n-1},.$$
      Because $fleft(dfrac{pi}{4}right)=1$, we get
      $$1=frac{4}{pi},sum_{n=1}^infty,frac{sinleft(frac{(2n-1),pi}{4}right)}{2n-1}=frac{4}{pi},sum_{n=1}^infty,frac{(-1)^{n-1}}{2n-1},.$$
      This shows that
      $$sum_{n=1}^infty,frac{(-1)^n}{2n-1}=-frac{pi}{4},.$$
      By (*), we conclude that
      $$sum_{n=1}^infty,frac{(-1)^n}{4n^2-1}=frac{1}{2}-frac{pi}{4}=frac{2-pi}{4}approx -0.28539816,.$$






      share|cite|improve this answer





















        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996476%2finteresting-proofs-of-this-sum%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        2














        I would go about it in a similar way like you do, just shorter, as follows:



        By partial fractions,



        $$
        frac{1}{4n^2-1} = frac12 left(frac{1}{2n-1} - frac{1}{2n+1} right)
        $$

        So
        $$
        sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)} = frac12 sum_{ninBbb N} left(frac{(-1)^n}{2n-1} - frac{(-1)^n}{2(n+1)-1} right)
        $$

        and by shifting the sum index
        $$
        sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)} = frac12 left(
        sum_{n=1}^infty frac{(-1)^n}{2n-1} + sum_{n=2}^infty frac{(-1)^n}{2n-1} right)\
        = frac12 left( 1 -
        2 sum_{n=1}^infty frac{(-1)^{n+1}}{2n-1} right) = frac{2-pi}{4}
        $$

        where in the last line the $arctan$ result was used.






        share|cite|improve this answer


























          2














          I would go about it in a similar way like you do, just shorter, as follows:



          By partial fractions,



          $$
          frac{1}{4n^2-1} = frac12 left(frac{1}{2n-1} - frac{1}{2n+1} right)
          $$

          So
          $$
          sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)} = frac12 sum_{ninBbb N} left(frac{(-1)^n}{2n-1} - frac{(-1)^n}{2(n+1)-1} right)
          $$

          and by shifting the sum index
          $$
          sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)} = frac12 left(
          sum_{n=1}^infty frac{(-1)^n}{2n-1} + sum_{n=2}^infty frac{(-1)^n}{2n-1} right)\
          = frac12 left( 1 -
          2 sum_{n=1}^infty frac{(-1)^{n+1}}{2n-1} right) = frac{2-pi}{4}
          $$

          where in the last line the $arctan$ result was used.






          share|cite|improve this answer
























            2












            2








            2






            I would go about it in a similar way like you do, just shorter, as follows:



            By partial fractions,



            $$
            frac{1}{4n^2-1} = frac12 left(frac{1}{2n-1} - frac{1}{2n+1} right)
            $$

            So
            $$
            sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)} = frac12 sum_{ninBbb N} left(frac{(-1)^n}{2n-1} - frac{(-1)^n}{2(n+1)-1} right)
            $$

            and by shifting the sum index
            $$
            sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)} = frac12 left(
            sum_{n=1}^infty frac{(-1)^n}{2n-1} + sum_{n=2}^infty frac{(-1)^n}{2n-1} right)\
            = frac12 left( 1 -
            2 sum_{n=1}^infty frac{(-1)^{n+1}}{2n-1} right) = frac{2-pi}{4}
            $$

            where in the last line the $arctan$ result was used.






            share|cite|improve this answer












            I would go about it in a similar way like you do, just shorter, as follows:



            By partial fractions,



            $$
            frac{1}{4n^2-1} = frac12 left(frac{1}{2n-1} - frac{1}{2n+1} right)
            $$

            So
            $$
            sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)} = frac12 sum_{ninBbb N} left(frac{(-1)^n}{2n-1} - frac{(-1)^n}{2(n+1)-1} right)
            $$

            and by shifting the sum index
            $$
            sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)} = frac12 left(
            sum_{n=1}^infty frac{(-1)^n}{2n-1} + sum_{n=2}^infty frac{(-1)^n}{2n-1} right)\
            = frac12 left( 1 -
            2 sum_{n=1}^infty frac{(-1)^{n+1}}{2n-1} right) = frac{2-pi}{4}
            $$

            where in the last line the $arctan$ result was used.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Nov 13 at 8:45









            Andreas

            7,6231037




            7,6231037























                3














                Consider a $2pi$-periodic function $f:Bbb{R}toBbb{C}$ whose values on $(-pi,pi]$ are given by $f(x)=operatorname{sign}xsinalpha x$. Then, $f$ is even so it has a Fourier series of the form
                $$f(x)=frac{a_0}{2}+sum_{n=1}^infty a_ncos nx,$$
                where $a_n=frac1piint_{-pi}^pi f(x)cos nx dx=frac{2}{pi}int_0^pi f(x)cos nx dx$ (recalling that $f$ is even). Because $2sinalpha xcos nx=sin(n+alpha)x-sin(n-alpha)x$, we conclude that
                $$a_n=begin{cases}frac{1-(-1)^ncosalpha pi}{pi}left(frac{1}{n+alpha}-frac{1}{n-alpha}right)&text{if }nneq pmalpha,\ 0&text{if }n=pmalpha.end{cases}$$



                Take $alpha=1/2$, so that
                $$a_n=frac{1-(-1)^ncosfrac{pi}{2}}{pi}left(frac{1}{n+1/2}-frac{1}{n-1/2}right)=-frac{4}{pi(4n^2-1)}.$$
                That is
                $$operatorname{sign}xsinfrac{x}{2}=frac{a_0}{2}+sum_{n=1}^infty a_ncos nx=frac2pi-frac4pisum_{n=1}^inftyfrac{1}{4n^2-1}cos nx$$
                for $-pi< xle pi$. Plugging in $x=pi$ (note that $f$ is continuous at $x=pi$, so we don't have to worry about jumps over there), we have
                $$1=operatorname{sign}{pi}sinfrac{pi}{2}=frac2pi-frac4pisum_{n=1}^inftyfrac{cos npi}{4n^2-1}=frac2pi-frac4pisum_{n=1}^inftyfrac{(-1)^n}{4n^2-1}.$$
                So $sum_{n=1}^inftyfrac{(-1)^n}{4n^2-1}=frac{2-pi}{4}$.





                Similarly, consider a $2pi$-periodic function $g:Bbb{R}toBbb{C}$ whose values on $(-pi,pi]$ are given by $g(x)=operatorname{sign}xcosalpha x$. Then, $g$ is odd so it has a Fourier series of the form
                $$g(x)=sum_{n=1}^infty b_nsin nx,$$
                where $b_n=frac1piint_{-pi}^pi g(x)sin nx dx=frac{2}{pi}int_0^pi g(x)sin nx dx$ (recalling that $g$ is odd). Because $2cosalpha xsin nx=sin(n+alpha)x+sin(n-alpha)x$, we conclude that
                $$b_n=begin{cases}frac{1-(-1)^ncosalpha pi}{pi}left(frac{1}{n+alpha}+frac{1}{n-alpha}right)&text{if }nneq pmalpha,\ 0&text{if }n=pmalpha.end{cases}$$






                share|cite|improve this answer


























                  3














                  Consider a $2pi$-periodic function $f:Bbb{R}toBbb{C}$ whose values on $(-pi,pi]$ are given by $f(x)=operatorname{sign}xsinalpha x$. Then, $f$ is even so it has a Fourier series of the form
                  $$f(x)=frac{a_0}{2}+sum_{n=1}^infty a_ncos nx,$$
                  where $a_n=frac1piint_{-pi}^pi f(x)cos nx dx=frac{2}{pi}int_0^pi f(x)cos nx dx$ (recalling that $f$ is even). Because $2sinalpha xcos nx=sin(n+alpha)x-sin(n-alpha)x$, we conclude that
                  $$a_n=begin{cases}frac{1-(-1)^ncosalpha pi}{pi}left(frac{1}{n+alpha}-frac{1}{n-alpha}right)&text{if }nneq pmalpha,\ 0&text{if }n=pmalpha.end{cases}$$



                  Take $alpha=1/2$, so that
                  $$a_n=frac{1-(-1)^ncosfrac{pi}{2}}{pi}left(frac{1}{n+1/2}-frac{1}{n-1/2}right)=-frac{4}{pi(4n^2-1)}.$$
                  That is
                  $$operatorname{sign}xsinfrac{x}{2}=frac{a_0}{2}+sum_{n=1}^infty a_ncos nx=frac2pi-frac4pisum_{n=1}^inftyfrac{1}{4n^2-1}cos nx$$
                  for $-pi< xle pi$. Plugging in $x=pi$ (note that $f$ is continuous at $x=pi$, so we don't have to worry about jumps over there), we have
                  $$1=operatorname{sign}{pi}sinfrac{pi}{2}=frac2pi-frac4pisum_{n=1}^inftyfrac{cos npi}{4n^2-1}=frac2pi-frac4pisum_{n=1}^inftyfrac{(-1)^n}{4n^2-1}.$$
                  So $sum_{n=1}^inftyfrac{(-1)^n}{4n^2-1}=frac{2-pi}{4}$.





                  Similarly, consider a $2pi$-periodic function $g:Bbb{R}toBbb{C}$ whose values on $(-pi,pi]$ are given by $g(x)=operatorname{sign}xcosalpha x$. Then, $g$ is odd so it has a Fourier series of the form
                  $$g(x)=sum_{n=1}^infty b_nsin nx,$$
                  where $b_n=frac1piint_{-pi}^pi g(x)sin nx dx=frac{2}{pi}int_0^pi g(x)sin nx dx$ (recalling that $g$ is odd). Because $2cosalpha xsin nx=sin(n+alpha)x+sin(n-alpha)x$, we conclude that
                  $$b_n=begin{cases}frac{1-(-1)^ncosalpha pi}{pi}left(frac{1}{n+alpha}+frac{1}{n-alpha}right)&text{if }nneq pmalpha,\ 0&text{if }n=pmalpha.end{cases}$$






                  share|cite|improve this answer
























                    3












                    3








                    3






                    Consider a $2pi$-periodic function $f:Bbb{R}toBbb{C}$ whose values on $(-pi,pi]$ are given by $f(x)=operatorname{sign}xsinalpha x$. Then, $f$ is even so it has a Fourier series of the form
                    $$f(x)=frac{a_0}{2}+sum_{n=1}^infty a_ncos nx,$$
                    where $a_n=frac1piint_{-pi}^pi f(x)cos nx dx=frac{2}{pi}int_0^pi f(x)cos nx dx$ (recalling that $f$ is even). Because $2sinalpha xcos nx=sin(n+alpha)x-sin(n-alpha)x$, we conclude that
                    $$a_n=begin{cases}frac{1-(-1)^ncosalpha pi}{pi}left(frac{1}{n+alpha}-frac{1}{n-alpha}right)&text{if }nneq pmalpha,\ 0&text{if }n=pmalpha.end{cases}$$



                    Take $alpha=1/2$, so that
                    $$a_n=frac{1-(-1)^ncosfrac{pi}{2}}{pi}left(frac{1}{n+1/2}-frac{1}{n-1/2}right)=-frac{4}{pi(4n^2-1)}.$$
                    That is
                    $$operatorname{sign}xsinfrac{x}{2}=frac{a_0}{2}+sum_{n=1}^infty a_ncos nx=frac2pi-frac4pisum_{n=1}^inftyfrac{1}{4n^2-1}cos nx$$
                    for $-pi< xle pi$. Plugging in $x=pi$ (note that $f$ is continuous at $x=pi$, so we don't have to worry about jumps over there), we have
                    $$1=operatorname{sign}{pi}sinfrac{pi}{2}=frac2pi-frac4pisum_{n=1}^inftyfrac{cos npi}{4n^2-1}=frac2pi-frac4pisum_{n=1}^inftyfrac{(-1)^n}{4n^2-1}.$$
                    So $sum_{n=1}^inftyfrac{(-1)^n}{4n^2-1}=frac{2-pi}{4}$.





                    Similarly, consider a $2pi$-periodic function $g:Bbb{R}toBbb{C}$ whose values on $(-pi,pi]$ are given by $g(x)=operatorname{sign}xcosalpha x$. Then, $g$ is odd so it has a Fourier series of the form
                    $$g(x)=sum_{n=1}^infty b_nsin nx,$$
                    where $b_n=frac1piint_{-pi}^pi g(x)sin nx dx=frac{2}{pi}int_0^pi g(x)sin nx dx$ (recalling that $g$ is odd). Because $2cosalpha xsin nx=sin(n+alpha)x+sin(n-alpha)x$, we conclude that
                    $$b_n=begin{cases}frac{1-(-1)^ncosalpha pi}{pi}left(frac{1}{n+alpha}+frac{1}{n-alpha}right)&text{if }nneq pmalpha,\ 0&text{if }n=pmalpha.end{cases}$$






                    share|cite|improve this answer












                    Consider a $2pi$-periodic function $f:Bbb{R}toBbb{C}$ whose values on $(-pi,pi]$ are given by $f(x)=operatorname{sign}xsinalpha x$. Then, $f$ is even so it has a Fourier series of the form
                    $$f(x)=frac{a_0}{2}+sum_{n=1}^infty a_ncos nx,$$
                    where $a_n=frac1piint_{-pi}^pi f(x)cos nx dx=frac{2}{pi}int_0^pi f(x)cos nx dx$ (recalling that $f$ is even). Because $2sinalpha xcos nx=sin(n+alpha)x-sin(n-alpha)x$, we conclude that
                    $$a_n=begin{cases}frac{1-(-1)^ncosalpha pi}{pi}left(frac{1}{n+alpha}-frac{1}{n-alpha}right)&text{if }nneq pmalpha,\ 0&text{if }n=pmalpha.end{cases}$$



                    Take $alpha=1/2$, so that
                    $$a_n=frac{1-(-1)^ncosfrac{pi}{2}}{pi}left(frac{1}{n+1/2}-frac{1}{n-1/2}right)=-frac{4}{pi(4n^2-1)}.$$
                    That is
                    $$operatorname{sign}xsinfrac{x}{2}=frac{a_0}{2}+sum_{n=1}^infty a_ncos nx=frac2pi-frac4pisum_{n=1}^inftyfrac{1}{4n^2-1}cos nx$$
                    for $-pi< xle pi$. Plugging in $x=pi$ (note that $f$ is continuous at $x=pi$, so we don't have to worry about jumps over there), we have
                    $$1=operatorname{sign}{pi}sinfrac{pi}{2}=frac2pi-frac4pisum_{n=1}^inftyfrac{cos npi}{4n^2-1}=frac2pi-frac4pisum_{n=1}^inftyfrac{(-1)^n}{4n^2-1}.$$
                    So $sum_{n=1}^inftyfrac{(-1)^n}{4n^2-1}=frac{2-pi}{4}$.





                    Similarly, consider a $2pi$-periodic function $g:Bbb{R}toBbb{C}$ whose values on $(-pi,pi]$ are given by $g(x)=operatorname{sign}xcosalpha x$. Then, $g$ is odd so it has a Fourier series of the form
                    $$g(x)=sum_{n=1}^infty b_nsin nx,$$
                    where $b_n=frac1piint_{-pi}^pi g(x)sin nx dx=frac{2}{pi}int_0^pi g(x)sin nx dx$ (recalling that $g$ is odd). Because $2cosalpha xsin nx=sin(n+alpha)x+sin(n-alpha)x$, we conclude that
                    $$b_n=begin{cases}frac{1-(-1)^ncosalpha pi}{pi}left(frac{1}{n+alpha}+frac{1}{n-alpha}right)&text{if }nneq pmalpha,\ 0&text{if }n=pmalpha.end{cases}$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Nov 23 at 13:29









                    Snookie

                    1,30017




                    1,30017























                        2














                        Here is my attempt to follow the instruction to use Fourier series. First, as you did, I rewrite the sum as
                        $$sum_{n=1}^infty,frac{(-1)^n}{4n^2-1}=sum_{n=1}^infty,frac{(-1)^n}{2}left(frac{1}{2n-1}-frac{1}{2n+1}right)=frac{1}{2}+sum_{n=1}^infty,frac{(-1)^n}{2n-1},.tag{*}$$



                        Let $f:mathbb{R}tomathbb{R}$ be the periodic function with period $2pi$ defined by
                        $$f(x):=begin{cases}+1&text{if }xin(0,+pi),,\0&text{if }xin{-pi,0,+pi},,\-1&text{if }xin(-pi,0),.end{cases}$$
                        Then, as $f$ is an odd function, $f$ has a Fourier sine-series:
                        $$f(x)=sum_{k=1}^infty,b_k,sin(kx)$$
                        for some real numbers $b_1,b_2,b_3,ldots$. We see that
                        $$begin{align}b_k&=frac{1}{pi},int_{-pi}^{+pi},sin(kx),f(x),text{d}x=frac{2}{pi},int_0^pi,sin(kx),text{d}x
                        \&=frac{2}{pi,k},Big.big(-cos(kx)big)Big|_{x=0}^{x=pi}=frac{2,big(1-(-1)^kbig)}{pi,k}
                        end{align}$$

                        for all $k=1,2,3,ldots$.
                        Consequently,
                        $$f(x)=sum_{k=1}^infty,frac{2,big(1-(-1)^kbig)}{pi,k},sin(kx)=frac{4}{pi},sum_{n=1}^infty,frac{sinbig((2n-1)xbig)}{2n-1},.$$
                        Because $fleft(dfrac{pi}{4}right)=1$, we get
                        $$1=frac{4}{pi},sum_{n=1}^infty,frac{sinleft(frac{(2n-1),pi}{4}right)}{2n-1}=frac{4}{pi},sum_{n=1}^infty,frac{(-1)^{n-1}}{2n-1},.$$
                        This shows that
                        $$sum_{n=1}^infty,frac{(-1)^n}{2n-1}=-frac{pi}{4},.$$
                        By (*), we conclude that
                        $$sum_{n=1}^infty,frac{(-1)^n}{4n^2-1}=frac{1}{2}-frac{pi}{4}=frac{2-pi}{4}approx -0.28539816,.$$






                        share|cite|improve this answer


























                          2














                          Here is my attempt to follow the instruction to use Fourier series. First, as you did, I rewrite the sum as
                          $$sum_{n=1}^infty,frac{(-1)^n}{4n^2-1}=sum_{n=1}^infty,frac{(-1)^n}{2}left(frac{1}{2n-1}-frac{1}{2n+1}right)=frac{1}{2}+sum_{n=1}^infty,frac{(-1)^n}{2n-1},.tag{*}$$



                          Let $f:mathbb{R}tomathbb{R}$ be the periodic function with period $2pi$ defined by
                          $$f(x):=begin{cases}+1&text{if }xin(0,+pi),,\0&text{if }xin{-pi,0,+pi},,\-1&text{if }xin(-pi,0),.end{cases}$$
                          Then, as $f$ is an odd function, $f$ has a Fourier sine-series:
                          $$f(x)=sum_{k=1}^infty,b_k,sin(kx)$$
                          for some real numbers $b_1,b_2,b_3,ldots$. We see that
                          $$begin{align}b_k&=frac{1}{pi},int_{-pi}^{+pi},sin(kx),f(x),text{d}x=frac{2}{pi},int_0^pi,sin(kx),text{d}x
                          \&=frac{2}{pi,k},Big.big(-cos(kx)big)Big|_{x=0}^{x=pi}=frac{2,big(1-(-1)^kbig)}{pi,k}
                          end{align}$$

                          for all $k=1,2,3,ldots$.
                          Consequently,
                          $$f(x)=sum_{k=1}^infty,frac{2,big(1-(-1)^kbig)}{pi,k},sin(kx)=frac{4}{pi},sum_{n=1}^infty,frac{sinbig((2n-1)xbig)}{2n-1},.$$
                          Because $fleft(dfrac{pi}{4}right)=1$, we get
                          $$1=frac{4}{pi},sum_{n=1}^infty,frac{sinleft(frac{(2n-1),pi}{4}right)}{2n-1}=frac{4}{pi},sum_{n=1}^infty,frac{(-1)^{n-1}}{2n-1},.$$
                          This shows that
                          $$sum_{n=1}^infty,frac{(-1)^n}{2n-1}=-frac{pi}{4},.$$
                          By (*), we conclude that
                          $$sum_{n=1}^infty,frac{(-1)^n}{4n^2-1}=frac{1}{2}-frac{pi}{4}=frac{2-pi}{4}approx -0.28539816,.$$






                          share|cite|improve this answer
























                            2












                            2








                            2






                            Here is my attempt to follow the instruction to use Fourier series. First, as you did, I rewrite the sum as
                            $$sum_{n=1}^infty,frac{(-1)^n}{4n^2-1}=sum_{n=1}^infty,frac{(-1)^n}{2}left(frac{1}{2n-1}-frac{1}{2n+1}right)=frac{1}{2}+sum_{n=1}^infty,frac{(-1)^n}{2n-1},.tag{*}$$



                            Let $f:mathbb{R}tomathbb{R}$ be the periodic function with period $2pi$ defined by
                            $$f(x):=begin{cases}+1&text{if }xin(0,+pi),,\0&text{if }xin{-pi,0,+pi},,\-1&text{if }xin(-pi,0),.end{cases}$$
                            Then, as $f$ is an odd function, $f$ has a Fourier sine-series:
                            $$f(x)=sum_{k=1}^infty,b_k,sin(kx)$$
                            for some real numbers $b_1,b_2,b_3,ldots$. We see that
                            $$begin{align}b_k&=frac{1}{pi},int_{-pi}^{+pi},sin(kx),f(x),text{d}x=frac{2}{pi},int_0^pi,sin(kx),text{d}x
                            \&=frac{2}{pi,k},Big.big(-cos(kx)big)Big|_{x=0}^{x=pi}=frac{2,big(1-(-1)^kbig)}{pi,k}
                            end{align}$$

                            for all $k=1,2,3,ldots$.
                            Consequently,
                            $$f(x)=sum_{k=1}^infty,frac{2,big(1-(-1)^kbig)}{pi,k},sin(kx)=frac{4}{pi},sum_{n=1}^infty,frac{sinbig((2n-1)xbig)}{2n-1},.$$
                            Because $fleft(dfrac{pi}{4}right)=1$, we get
                            $$1=frac{4}{pi},sum_{n=1}^infty,frac{sinleft(frac{(2n-1),pi}{4}right)}{2n-1}=frac{4}{pi},sum_{n=1}^infty,frac{(-1)^{n-1}}{2n-1},.$$
                            This shows that
                            $$sum_{n=1}^infty,frac{(-1)^n}{2n-1}=-frac{pi}{4},.$$
                            By (*), we conclude that
                            $$sum_{n=1}^infty,frac{(-1)^n}{4n^2-1}=frac{1}{2}-frac{pi}{4}=frac{2-pi}{4}approx -0.28539816,.$$






                            share|cite|improve this answer












                            Here is my attempt to follow the instruction to use Fourier series. First, as you did, I rewrite the sum as
                            $$sum_{n=1}^infty,frac{(-1)^n}{4n^2-1}=sum_{n=1}^infty,frac{(-1)^n}{2}left(frac{1}{2n-1}-frac{1}{2n+1}right)=frac{1}{2}+sum_{n=1}^infty,frac{(-1)^n}{2n-1},.tag{*}$$



                            Let $f:mathbb{R}tomathbb{R}$ be the periodic function with period $2pi$ defined by
                            $$f(x):=begin{cases}+1&text{if }xin(0,+pi),,\0&text{if }xin{-pi,0,+pi},,\-1&text{if }xin(-pi,0),.end{cases}$$
                            Then, as $f$ is an odd function, $f$ has a Fourier sine-series:
                            $$f(x)=sum_{k=1}^infty,b_k,sin(kx)$$
                            for some real numbers $b_1,b_2,b_3,ldots$. We see that
                            $$begin{align}b_k&=frac{1}{pi},int_{-pi}^{+pi},sin(kx),f(x),text{d}x=frac{2}{pi},int_0^pi,sin(kx),text{d}x
                            \&=frac{2}{pi,k},Big.big(-cos(kx)big)Big|_{x=0}^{x=pi}=frac{2,big(1-(-1)^kbig)}{pi,k}
                            end{align}$$

                            for all $k=1,2,3,ldots$.
                            Consequently,
                            $$f(x)=sum_{k=1}^infty,frac{2,big(1-(-1)^kbig)}{pi,k},sin(kx)=frac{4}{pi},sum_{n=1}^infty,frac{sinbig((2n-1)xbig)}{2n-1},.$$
                            Because $fleft(dfrac{pi}{4}right)=1$, we get
                            $$1=frac{4}{pi},sum_{n=1}^infty,frac{sinleft(frac{(2n-1),pi}{4}right)}{2n-1}=frac{4}{pi},sum_{n=1}^infty,frac{(-1)^{n-1}}{2n-1},.$$
                            This shows that
                            $$sum_{n=1}^infty,frac{(-1)^n}{2n-1}=-frac{pi}{4},.$$
                            By (*), we conclude that
                            $$sum_{n=1}^infty,frac{(-1)^n}{4n^2-1}=frac{1}{2}-frac{pi}{4}=frac{2-pi}{4}approx -0.28539816,.$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Nov 22 at 20:16









                            Batominovski

                            33.7k33292




                            33.7k33292






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.





                                Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                Please pay close attention to the following guidance:


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996476%2finteresting-proofs-of-this-sum%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Plaza Victoria

                                Puebla de Zaragoza

                                Musa