Interesting proofs of this sum
So I was asked to solve the following sum using Fourier Series:
$$sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)}$$
I decided to try splitting it up into two sums (for even and odd $n$) in the hopes that it would telescope and be easier to evaluate. It did not, but I was able to salvage my work by employing the arctangent Taylor Series. The purpose of this post is twofold: to post a rather unusual approach and to ask others how they might do this problem more easily/differently.
First I noted
$$sum_{ninBbb N}frac{(-1)^n}{4n^2-1}=sum_{ninmathbb N}frac{1}{16n^2-1}^{(2)}-sum_{ninmathbb N}frac{1}{4(2n-1)^2-1}^{(3)}$$
Using partial fractions of the first sum on the RHS:
$$(2);sum_{ninmathbb N}frac{1}{16n^2-1}=frac{1}{2}sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)$$
Using partial fractions on the second sum on the RHS:
$$(3);sum_{ninmathbb N}frac{1}{4(2n-1)^2-1}=frac{1}{2}sum_{ninmathbb N}left(frac{1}{4n-3}-frac{1}{4n-1}right)=-frac{1}{2}+frac{1}{2}sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)$$
Combining results for the even and odd sums from the RHS:
$$sum_{ninmathbb N}frac{1}{16n^2-1}-sum_{ninmathbb N}frac{1}{4(2n-1)^2-1}=-frac{1}{2}+sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)^{(4)}$$
Then I saw that the rightmost sum was the following:
$$sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)=sum_{n=2}^inftyfrac{(-1)^{n}}{2n-1}^{(5)}$$
Note the Taylor series for arctangent:
$$text{atan}(x)=sum_{n=1}^inftyfrac{(-1)^{n-1}x^n}{2n-1}$$
Letting $x=1$:
$$text{atan}(1)=frac{pi}{4}=sum_{n=1}^inftyfrac{(-1)^{n+1}}{2n-1}$$
Accounting for index and sign difference, we see that
$$(5);sum_{n=2}^inftyfrac{(-1)^{n}}{2n-1}=1-frac{pi}{4}$$
And finally, from the $-1/2$ term in $(4)$, we see that
$$(1);sum_{ninBbb N}frac{(-1)^n}{4n^2-1}=frac{2-pi}{4}$$
summation fourier-series
add a comment |
So I was asked to solve the following sum using Fourier Series:
$$sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)}$$
I decided to try splitting it up into two sums (for even and odd $n$) in the hopes that it would telescope and be easier to evaluate. It did not, but I was able to salvage my work by employing the arctangent Taylor Series. The purpose of this post is twofold: to post a rather unusual approach and to ask others how they might do this problem more easily/differently.
First I noted
$$sum_{ninBbb N}frac{(-1)^n}{4n^2-1}=sum_{ninmathbb N}frac{1}{16n^2-1}^{(2)}-sum_{ninmathbb N}frac{1}{4(2n-1)^2-1}^{(3)}$$
Using partial fractions of the first sum on the RHS:
$$(2);sum_{ninmathbb N}frac{1}{16n^2-1}=frac{1}{2}sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)$$
Using partial fractions on the second sum on the RHS:
$$(3);sum_{ninmathbb N}frac{1}{4(2n-1)^2-1}=frac{1}{2}sum_{ninmathbb N}left(frac{1}{4n-3}-frac{1}{4n-1}right)=-frac{1}{2}+frac{1}{2}sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)$$
Combining results for the even and odd sums from the RHS:
$$sum_{ninmathbb N}frac{1}{16n^2-1}-sum_{ninmathbb N}frac{1}{4(2n-1)^2-1}=-frac{1}{2}+sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)^{(4)}$$
Then I saw that the rightmost sum was the following:
$$sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)=sum_{n=2}^inftyfrac{(-1)^{n}}{2n-1}^{(5)}$$
Note the Taylor series for arctangent:
$$text{atan}(x)=sum_{n=1}^inftyfrac{(-1)^{n-1}x^n}{2n-1}$$
Letting $x=1$:
$$text{atan}(1)=frac{pi}{4}=sum_{n=1}^inftyfrac{(-1)^{n+1}}{2n-1}$$
Accounting for index and sign difference, we see that
$$(5);sum_{n=2}^inftyfrac{(-1)^{n}}{2n-1}=1-frac{pi}{4}$$
And finally, from the $-1/2$ term in $(4)$, we see that
$$(1);sum_{ninBbb N}frac{(-1)^n}{4n^2-1}=frac{2-pi}{4}$$
summation fourier-series
1
and what is your question?
– Masacroso
Nov 13 at 8:31
3
@Masacroso MSE has explicitly said that asking your own question and answering with an interesting result is well-received, albeit uncommon. I also asked if anyone else had nice approaches to this specific question
– Lanier Freeman
Nov 13 at 8:43
add a comment |
So I was asked to solve the following sum using Fourier Series:
$$sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)}$$
I decided to try splitting it up into two sums (for even and odd $n$) in the hopes that it would telescope and be easier to evaluate. It did not, but I was able to salvage my work by employing the arctangent Taylor Series. The purpose of this post is twofold: to post a rather unusual approach and to ask others how they might do this problem more easily/differently.
First I noted
$$sum_{ninBbb N}frac{(-1)^n}{4n^2-1}=sum_{ninmathbb N}frac{1}{16n^2-1}^{(2)}-sum_{ninmathbb N}frac{1}{4(2n-1)^2-1}^{(3)}$$
Using partial fractions of the first sum on the RHS:
$$(2);sum_{ninmathbb N}frac{1}{16n^2-1}=frac{1}{2}sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)$$
Using partial fractions on the second sum on the RHS:
$$(3);sum_{ninmathbb N}frac{1}{4(2n-1)^2-1}=frac{1}{2}sum_{ninmathbb N}left(frac{1}{4n-3}-frac{1}{4n-1}right)=-frac{1}{2}+frac{1}{2}sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)$$
Combining results for the even and odd sums from the RHS:
$$sum_{ninmathbb N}frac{1}{16n^2-1}-sum_{ninmathbb N}frac{1}{4(2n-1)^2-1}=-frac{1}{2}+sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)^{(4)}$$
Then I saw that the rightmost sum was the following:
$$sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)=sum_{n=2}^inftyfrac{(-1)^{n}}{2n-1}^{(5)}$$
Note the Taylor series for arctangent:
$$text{atan}(x)=sum_{n=1}^inftyfrac{(-1)^{n-1}x^n}{2n-1}$$
Letting $x=1$:
$$text{atan}(1)=frac{pi}{4}=sum_{n=1}^inftyfrac{(-1)^{n+1}}{2n-1}$$
Accounting for index and sign difference, we see that
$$(5);sum_{n=2}^inftyfrac{(-1)^{n}}{2n-1}=1-frac{pi}{4}$$
And finally, from the $-1/2$ term in $(4)$, we see that
$$(1);sum_{ninBbb N}frac{(-1)^n}{4n^2-1}=frac{2-pi}{4}$$
summation fourier-series
So I was asked to solve the following sum using Fourier Series:
$$sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)}$$
I decided to try splitting it up into two sums (for even and odd $n$) in the hopes that it would telescope and be easier to evaluate. It did not, but I was able to salvage my work by employing the arctangent Taylor Series. The purpose of this post is twofold: to post a rather unusual approach and to ask others how they might do this problem more easily/differently.
First I noted
$$sum_{ninBbb N}frac{(-1)^n}{4n^2-1}=sum_{ninmathbb N}frac{1}{16n^2-1}^{(2)}-sum_{ninmathbb N}frac{1}{4(2n-1)^2-1}^{(3)}$$
Using partial fractions of the first sum on the RHS:
$$(2);sum_{ninmathbb N}frac{1}{16n^2-1}=frac{1}{2}sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)$$
Using partial fractions on the second sum on the RHS:
$$(3);sum_{ninmathbb N}frac{1}{4(2n-1)^2-1}=frac{1}{2}sum_{ninmathbb N}left(frac{1}{4n-3}-frac{1}{4n-1}right)=-frac{1}{2}+frac{1}{2}sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)$$
Combining results for the even and odd sums from the RHS:
$$sum_{ninmathbb N}frac{1}{16n^2-1}-sum_{ninmathbb N}frac{1}{4(2n-1)^2-1}=-frac{1}{2}+sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)^{(4)}$$
Then I saw that the rightmost sum was the following:
$$sum_{ninmathbb N}left(frac{1}{4n-1}-frac{1}{4n+1}right)=sum_{n=2}^inftyfrac{(-1)^{n}}{2n-1}^{(5)}$$
Note the Taylor series for arctangent:
$$text{atan}(x)=sum_{n=1}^inftyfrac{(-1)^{n-1}x^n}{2n-1}$$
Letting $x=1$:
$$text{atan}(1)=frac{pi}{4}=sum_{n=1}^inftyfrac{(-1)^{n+1}}{2n-1}$$
Accounting for index and sign difference, we see that
$$(5);sum_{n=2}^inftyfrac{(-1)^{n}}{2n-1}=1-frac{pi}{4}$$
And finally, from the $-1/2$ term in $(4)$, we see that
$$(1);sum_{ninBbb N}frac{(-1)^n}{4n^2-1}=frac{2-pi}{4}$$
summation fourier-series
summation fourier-series
edited Nov 13 at 21:51
asked Nov 13 at 8:16
Lanier Freeman
2,837927
2,837927
1
and what is your question?
– Masacroso
Nov 13 at 8:31
3
@Masacroso MSE has explicitly said that asking your own question and answering with an interesting result is well-received, albeit uncommon. I also asked if anyone else had nice approaches to this specific question
– Lanier Freeman
Nov 13 at 8:43
add a comment |
1
and what is your question?
– Masacroso
Nov 13 at 8:31
3
@Masacroso MSE has explicitly said that asking your own question and answering with an interesting result is well-received, albeit uncommon. I also asked if anyone else had nice approaches to this specific question
– Lanier Freeman
Nov 13 at 8:43
1
1
and what is your question?
– Masacroso
Nov 13 at 8:31
and what is your question?
– Masacroso
Nov 13 at 8:31
3
3
@Masacroso MSE has explicitly said that asking your own question and answering with an interesting result is well-received, albeit uncommon. I also asked if anyone else had nice approaches to this specific question
– Lanier Freeman
Nov 13 at 8:43
@Masacroso MSE has explicitly said that asking your own question and answering with an interesting result is well-received, albeit uncommon. I also asked if anyone else had nice approaches to this specific question
– Lanier Freeman
Nov 13 at 8:43
add a comment |
3 Answers
3
active
oldest
votes
I would go about it in a similar way like you do, just shorter, as follows:
By partial fractions,
$$
frac{1}{4n^2-1} = frac12 left(frac{1}{2n-1} - frac{1}{2n+1} right)
$$
So
$$
sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)} = frac12 sum_{ninBbb N} left(frac{(-1)^n}{2n-1} - frac{(-1)^n}{2(n+1)-1} right)
$$
and by shifting the sum index
$$
sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)} = frac12 left(
sum_{n=1}^infty frac{(-1)^n}{2n-1} + sum_{n=2}^infty frac{(-1)^n}{2n-1} right)\
= frac12 left( 1 -
2 sum_{n=1}^infty frac{(-1)^{n+1}}{2n-1} right) = frac{2-pi}{4}
$$
where in the last line the $arctan$ result was used.
add a comment |
Consider a $2pi$-periodic function $f:Bbb{R}toBbb{C}$ whose values on $(-pi,pi]$ are given by $f(x)=operatorname{sign}xsinalpha x$. Then, $f$ is even so it has a Fourier series of the form
$$f(x)=frac{a_0}{2}+sum_{n=1}^infty a_ncos nx,$$
where $a_n=frac1piint_{-pi}^pi f(x)cos nx dx=frac{2}{pi}int_0^pi f(x)cos nx dx$ (recalling that $f$ is even). Because $2sinalpha xcos nx=sin(n+alpha)x-sin(n-alpha)x$, we conclude that
$$a_n=begin{cases}frac{1-(-1)^ncosalpha pi}{pi}left(frac{1}{n+alpha}-frac{1}{n-alpha}right)&text{if }nneq pmalpha,\ 0&text{if }n=pmalpha.end{cases}$$
Take $alpha=1/2$, so that
$$a_n=frac{1-(-1)^ncosfrac{pi}{2}}{pi}left(frac{1}{n+1/2}-frac{1}{n-1/2}right)=-frac{4}{pi(4n^2-1)}.$$
That is
$$operatorname{sign}xsinfrac{x}{2}=frac{a_0}{2}+sum_{n=1}^infty a_ncos nx=frac2pi-frac4pisum_{n=1}^inftyfrac{1}{4n^2-1}cos nx$$
for $-pi< xle pi$. Plugging in $x=pi$ (note that $f$ is continuous at $x=pi$, so we don't have to worry about jumps over there), we have
$$1=operatorname{sign}{pi}sinfrac{pi}{2}=frac2pi-frac4pisum_{n=1}^inftyfrac{cos npi}{4n^2-1}=frac2pi-frac4pisum_{n=1}^inftyfrac{(-1)^n}{4n^2-1}.$$
So $sum_{n=1}^inftyfrac{(-1)^n}{4n^2-1}=frac{2-pi}{4}$.
Similarly, consider a $2pi$-periodic function $g:Bbb{R}toBbb{C}$ whose values on $(-pi,pi]$ are given by $g(x)=operatorname{sign}xcosalpha x$. Then, $g$ is odd so it has a Fourier series of the form
$$g(x)=sum_{n=1}^infty b_nsin nx,$$
where $b_n=frac1piint_{-pi}^pi g(x)sin nx dx=frac{2}{pi}int_0^pi g(x)sin nx dx$ (recalling that $g$ is odd). Because $2cosalpha xsin nx=sin(n+alpha)x+sin(n-alpha)x$, we conclude that
$$b_n=begin{cases}frac{1-(-1)^ncosalpha pi}{pi}left(frac{1}{n+alpha}+frac{1}{n-alpha}right)&text{if }nneq pmalpha,\ 0&text{if }n=pmalpha.end{cases}$$
add a comment |
Here is my attempt to follow the instruction to use Fourier series. First, as you did, I rewrite the sum as
$$sum_{n=1}^infty,frac{(-1)^n}{4n^2-1}=sum_{n=1}^infty,frac{(-1)^n}{2}left(frac{1}{2n-1}-frac{1}{2n+1}right)=frac{1}{2}+sum_{n=1}^infty,frac{(-1)^n}{2n-1},.tag{*}$$
Let $f:mathbb{R}tomathbb{R}$ be the periodic function with period $2pi$ defined by
$$f(x):=begin{cases}+1&text{if }xin(0,+pi),,\0&text{if }xin{-pi,0,+pi},,\-1&text{if }xin(-pi,0),.end{cases}$$
Then, as $f$ is an odd function, $f$ has a Fourier sine-series:
$$f(x)=sum_{k=1}^infty,b_k,sin(kx)$$
for some real numbers $b_1,b_2,b_3,ldots$. We see that
$$begin{align}b_k&=frac{1}{pi},int_{-pi}^{+pi},sin(kx),f(x),text{d}x=frac{2}{pi},int_0^pi,sin(kx),text{d}x
\&=frac{2}{pi,k},Big.big(-cos(kx)big)Big|_{x=0}^{x=pi}=frac{2,big(1-(-1)^kbig)}{pi,k}
end{align}$$
for all $k=1,2,3,ldots$.
Consequently,
$$f(x)=sum_{k=1}^infty,frac{2,big(1-(-1)^kbig)}{pi,k},sin(kx)=frac{4}{pi},sum_{n=1}^infty,frac{sinbig((2n-1)xbig)}{2n-1},.$$
Because $fleft(dfrac{pi}{4}right)=1$, we get
$$1=frac{4}{pi},sum_{n=1}^infty,frac{sinleft(frac{(2n-1),pi}{4}right)}{2n-1}=frac{4}{pi},sum_{n=1}^infty,frac{(-1)^{n-1}}{2n-1},.$$
This shows that
$$sum_{n=1}^infty,frac{(-1)^n}{2n-1}=-frac{pi}{4},.$$
By (*), we conclude that
$$sum_{n=1}^infty,frac{(-1)^n}{4n^2-1}=frac{1}{2}-frac{pi}{4}=frac{2-pi}{4}approx -0.28539816,.$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996476%2finteresting-proofs-of-this-sum%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
I would go about it in a similar way like you do, just shorter, as follows:
By partial fractions,
$$
frac{1}{4n^2-1} = frac12 left(frac{1}{2n-1} - frac{1}{2n+1} right)
$$
So
$$
sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)} = frac12 sum_{ninBbb N} left(frac{(-1)^n}{2n-1} - frac{(-1)^n}{2(n+1)-1} right)
$$
and by shifting the sum index
$$
sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)} = frac12 left(
sum_{n=1}^infty frac{(-1)^n}{2n-1} + sum_{n=2}^infty frac{(-1)^n}{2n-1} right)\
= frac12 left( 1 -
2 sum_{n=1}^infty frac{(-1)^{n+1}}{2n-1} right) = frac{2-pi}{4}
$$
where in the last line the $arctan$ result was used.
add a comment |
I would go about it in a similar way like you do, just shorter, as follows:
By partial fractions,
$$
frac{1}{4n^2-1} = frac12 left(frac{1}{2n-1} - frac{1}{2n+1} right)
$$
So
$$
sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)} = frac12 sum_{ninBbb N} left(frac{(-1)^n}{2n-1} - frac{(-1)^n}{2(n+1)-1} right)
$$
and by shifting the sum index
$$
sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)} = frac12 left(
sum_{n=1}^infty frac{(-1)^n}{2n-1} + sum_{n=2}^infty frac{(-1)^n}{2n-1} right)\
= frac12 left( 1 -
2 sum_{n=1}^infty frac{(-1)^{n+1}}{2n-1} right) = frac{2-pi}{4}
$$
where in the last line the $arctan$ result was used.
add a comment |
I would go about it in a similar way like you do, just shorter, as follows:
By partial fractions,
$$
frac{1}{4n^2-1} = frac12 left(frac{1}{2n-1} - frac{1}{2n+1} right)
$$
So
$$
sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)} = frac12 sum_{ninBbb N} left(frac{(-1)^n}{2n-1} - frac{(-1)^n}{2(n+1)-1} right)
$$
and by shifting the sum index
$$
sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)} = frac12 left(
sum_{n=1}^infty frac{(-1)^n}{2n-1} + sum_{n=2}^infty frac{(-1)^n}{2n-1} right)\
= frac12 left( 1 -
2 sum_{n=1}^infty frac{(-1)^{n+1}}{2n-1} right) = frac{2-pi}{4}
$$
where in the last line the $arctan$ result was used.
I would go about it in a similar way like you do, just shorter, as follows:
By partial fractions,
$$
frac{1}{4n^2-1} = frac12 left(frac{1}{2n-1} - frac{1}{2n+1} right)
$$
So
$$
sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)} = frac12 sum_{ninBbb N} left(frac{(-1)^n}{2n-1} - frac{(-1)^n}{2(n+1)-1} right)
$$
and by shifting the sum index
$$
sum_{ninBbb N}frac{(-1)^n}{4n^2-1}^{(1)} = frac12 left(
sum_{n=1}^infty frac{(-1)^n}{2n-1} + sum_{n=2}^infty frac{(-1)^n}{2n-1} right)\
= frac12 left( 1 -
2 sum_{n=1}^infty frac{(-1)^{n+1}}{2n-1} right) = frac{2-pi}{4}
$$
where in the last line the $arctan$ result was used.
answered Nov 13 at 8:45
Andreas
7,6231037
7,6231037
add a comment |
add a comment |
Consider a $2pi$-periodic function $f:Bbb{R}toBbb{C}$ whose values on $(-pi,pi]$ are given by $f(x)=operatorname{sign}xsinalpha x$. Then, $f$ is even so it has a Fourier series of the form
$$f(x)=frac{a_0}{2}+sum_{n=1}^infty a_ncos nx,$$
where $a_n=frac1piint_{-pi}^pi f(x)cos nx dx=frac{2}{pi}int_0^pi f(x)cos nx dx$ (recalling that $f$ is even). Because $2sinalpha xcos nx=sin(n+alpha)x-sin(n-alpha)x$, we conclude that
$$a_n=begin{cases}frac{1-(-1)^ncosalpha pi}{pi}left(frac{1}{n+alpha}-frac{1}{n-alpha}right)&text{if }nneq pmalpha,\ 0&text{if }n=pmalpha.end{cases}$$
Take $alpha=1/2$, so that
$$a_n=frac{1-(-1)^ncosfrac{pi}{2}}{pi}left(frac{1}{n+1/2}-frac{1}{n-1/2}right)=-frac{4}{pi(4n^2-1)}.$$
That is
$$operatorname{sign}xsinfrac{x}{2}=frac{a_0}{2}+sum_{n=1}^infty a_ncos nx=frac2pi-frac4pisum_{n=1}^inftyfrac{1}{4n^2-1}cos nx$$
for $-pi< xle pi$. Plugging in $x=pi$ (note that $f$ is continuous at $x=pi$, so we don't have to worry about jumps over there), we have
$$1=operatorname{sign}{pi}sinfrac{pi}{2}=frac2pi-frac4pisum_{n=1}^inftyfrac{cos npi}{4n^2-1}=frac2pi-frac4pisum_{n=1}^inftyfrac{(-1)^n}{4n^2-1}.$$
So $sum_{n=1}^inftyfrac{(-1)^n}{4n^2-1}=frac{2-pi}{4}$.
Similarly, consider a $2pi$-periodic function $g:Bbb{R}toBbb{C}$ whose values on $(-pi,pi]$ are given by $g(x)=operatorname{sign}xcosalpha x$. Then, $g$ is odd so it has a Fourier series of the form
$$g(x)=sum_{n=1}^infty b_nsin nx,$$
where $b_n=frac1piint_{-pi}^pi g(x)sin nx dx=frac{2}{pi}int_0^pi g(x)sin nx dx$ (recalling that $g$ is odd). Because $2cosalpha xsin nx=sin(n+alpha)x+sin(n-alpha)x$, we conclude that
$$b_n=begin{cases}frac{1-(-1)^ncosalpha pi}{pi}left(frac{1}{n+alpha}+frac{1}{n-alpha}right)&text{if }nneq pmalpha,\ 0&text{if }n=pmalpha.end{cases}$$
add a comment |
Consider a $2pi$-periodic function $f:Bbb{R}toBbb{C}$ whose values on $(-pi,pi]$ are given by $f(x)=operatorname{sign}xsinalpha x$. Then, $f$ is even so it has a Fourier series of the form
$$f(x)=frac{a_0}{2}+sum_{n=1}^infty a_ncos nx,$$
where $a_n=frac1piint_{-pi}^pi f(x)cos nx dx=frac{2}{pi}int_0^pi f(x)cos nx dx$ (recalling that $f$ is even). Because $2sinalpha xcos nx=sin(n+alpha)x-sin(n-alpha)x$, we conclude that
$$a_n=begin{cases}frac{1-(-1)^ncosalpha pi}{pi}left(frac{1}{n+alpha}-frac{1}{n-alpha}right)&text{if }nneq pmalpha,\ 0&text{if }n=pmalpha.end{cases}$$
Take $alpha=1/2$, so that
$$a_n=frac{1-(-1)^ncosfrac{pi}{2}}{pi}left(frac{1}{n+1/2}-frac{1}{n-1/2}right)=-frac{4}{pi(4n^2-1)}.$$
That is
$$operatorname{sign}xsinfrac{x}{2}=frac{a_0}{2}+sum_{n=1}^infty a_ncos nx=frac2pi-frac4pisum_{n=1}^inftyfrac{1}{4n^2-1}cos nx$$
for $-pi< xle pi$. Plugging in $x=pi$ (note that $f$ is continuous at $x=pi$, so we don't have to worry about jumps over there), we have
$$1=operatorname{sign}{pi}sinfrac{pi}{2}=frac2pi-frac4pisum_{n=1}^inftyfrac{cos npi}{4n^2-1}=frac2pi-frac4pisum_{n=1}^inftyfrac{(-1)^n}{4n^2-1}.$$
So $sum_{n=1}^inftyfrac{(-1)^n}{4n^2-1}=frac{2-pi}{4}$.
Similarly, consider a $2pi$-periodic function $g:Bbb{R}toBbb{C}$ whose values on $(-pi,pi]$ are given by $g(x)=operatorname{sign}xcosalpha x$. Then, $g$ is odd so it has a Fourier series of the form
$$g(x)=sum_{n=1}^infty b_nsin nx,$$
where $b_n=frac1piint_{-pi}^pi g(x)sin nx dx=frac{2}{pi}int_0^pi g(x)sin nx dx$ (recalling that $g$ is odd). Because $2cosalpha xsin nx=sin(n+alpha)x+sin(n-alpha)x$, we conclude that
$$b_n=begin{cases}frac{1-(-1)^ncosalpha pi}{pi}left(frac{1}{n+alpha}+frac{1}{n-alpha}right)&text{if }nneq pmalpha,\ 0&text{if }n=pmalpha.end{cases}$$
add a comment |
Consider a $2pi$-periodic function $f:Bbb{R}toBbb{C}$ whose values on $(-pi,pi]$ are given by $f(x)=operatorname{sign}xsinalpha x$. Then, $f$ is even so it has a Fourier series of the form
$$f(x)=frac{a_0}{2}+sum_{n=1}^infty a_ncos nx,$$
where $a_n=frac1piint_{-pi}^pi f(x)cos nx dx=frac{2}{pi}int_0^pi f(x)cos nx dx$ (recalling that $f$ is even). Because $2sinalpha xcos nx=sin(n+alpha)x-sin(n-alpha)x$, we conclude that
$$a_n=begin{cases}frac{1-(-1)^ncosalpha pi}{pi}left(frac{1}{n+alpha}-frac{1}{n-alpha}right)&text{if }nneq pmalpha,\ 0&text{if }n=pmalpha.end{cases}$$
Take $alpha=1/2$, so that
$$a_n=frac{1-(-1)^ncosfrac{pi}{2}}{pi}left(frac{1}{n+1/2}-frac{1}{n-1/2}right)=-frac{4}{pi(4n^2-1)}.$$
That is
$$operatorname{sign}xsinfrac{x}{2}=frac{a_0}{2}+sum_{n=1}^infty a_ncos nx=frac2pi-frac4pisum_{n=1}^inftyfrac{1}{4n^2-1}cos nx$$
for $-pi< xle pi$. Plugging in $x=pi$ (note that $f$ is continuous at $x=pi$, so we don't have to worry about jumps over there), we have
$$1=operatorname{sign}{pi}sinfrac{pi}{2}=frac2pi-frac4pisum_{n=1}^inftyfrac{cos npi}{4n^2-1}=frac2pi-frac4pisum_{n=1}^inftyfrac{(-1)^n}{4n^2-1}.$$
So $sum_{n=1}^inftyfrac{(-1)^n}{4n^2-1}=frac{2-pi}{4}$.
Similarly, consider a $2pi$-periodic function $g:Bbb{R}toBbb{C}$ whose values on $(-pi,pi]$ are given by $g(x)=operatorname{sign}xcosalpha x$. Then, $g$ is odd so it has a Fourier series of the form
$$g(x)=sum_{n=1}^infty b_nsin nx,$$
where $b_n=frac1piint_{-pi}^pi g(x)sin nx dx=frac{2}{pi}int_0^pi g(x)sin nx dx$ (recalling that $g$ is odd). Because $2cosalpha xsin nx=sin(n+alpha)x+sin(n-alpha)x$, we conclude that
$$b_n=begin{cases}frac{1-(-1)^ncosalpha pi}{pi}left(frac{1}{n+alpha}+frac{1}{n-alpha}right)&text{if }nneq pmalpha,\ 0&text{if }n=pmalpha.end{cases}$$
Consider a $2pi$-periodic function $f:Bbb{R}toBbb{C}$ whose values on $(-pi,pi]$ are given by $f(x)=operatorname{sign}xsinalpha x$. Then, $f$ is even so it has a Fourier series of the form
$$f(x)=frac{a_0}{2}+sum_{n=1}^infty a_ncos nx,$$
where $a_n=frac1piint_{-pi}^pi f(x)cos nx dx=frac{2}{pi}int_0^pi f(x)cos nx dx$ (recalling that $f$ is even). Because $2sinalpha xcos nx=sin(n+alpha)x-sin(n-alpha)x$, we conclude that
$$a_n=begin{cases}frac{1-(-1)^ncosalpha pi}{pi}left(frac{1}{n+alpha}-frac{1}{n-alpha}right)&text{if }nneq pmalpha,\ 0&text{if }n=pmalpha.end{cases}$$
Take $alpha=1/2$, so that
$$a_n=frac{1-(-1)^ncosfrac{pi}{2}}{pi}left(frac{1}{n+1/2}-frac{1}{n-1/2}right)=-frac{4}{pi(4n^2-1)}.$$
That is
$$operatorname{sign}xsinfrac{x}{2}=frac{a_0}{2}+sum_{n=1}^infty a_ncos nx=frac2pi-frac4pisum_{n=1}^inftyfrac{1}{4n^2-1}cos nx$$
for $-pi< xle pi$. Plugging in $x=pi$ (note that $f$ is continuous at $x=pi$, so we don't have to worry about jumps over there), we have
$$1=operatorname{sign}{pi}sinfrac{pi}{2}=frac2pi-frac4pisum_{n=1}^inftyfrac{cos npi}{4n^2-1}=frac2pi-frac4pisum_{n=1}^inftyfrac{(-1)^n}{4n^2-1}.$$
So $sum_{n=1}^inftyfrac{(-1)^n}{4n^2-1}=frac{2-pi}{4}$.
Similarly, consider a $2pi$-periodic function $g:Bbb{R}toBbb{C}$ whose values on $(-pi,pi]$ are given by $g(x)=operatorname{sign}xcosalpha x$. Then, $g$ is odd so it has a Fourier series of the form
$$g(x)=sum_{n=1}^infty b_nsin nx,$$
where $b_n=frac1piint_{-pi}^pi g(x)sin nx dx=frac{2}{pi}int_0^pi g(x)sin nx dx$ (recalling that $g$ is odd). Because $2cosalpha xsin nx=sin(n+alpha)x+sin(n-alpha)x$, we conclude that
$$b_n=begin{cases}frac{1-(-1)^ncosalpha pi}{pi}left(frac{1}{n+alpha}+frac{1}{n-alpha}right)&text{if }nneq pmalpha,\ 0&text{if }n=pmalpha.end{cases}$$
answered Nov 23 at 13:29
Snookie
1,30017
1,30017
add a comment |
add a comment |
Here is my attempt to follow the instruction to use Fourier series. First, as you did, I rewrite the sum as
$$sum_{n=1}^infty,frac{(-1)^n}{4n^2-1}=sum_{n=1}^infty,frac{(-1)^n}{2}left(frac{1}{2n-1}-frac{1}{2n+1}right)=frac{1}{2}+sum_{n=1}^infty,frac{(-1)^n}{2n-1},.tag{*}$$
Let $f:mathbb{R}tomathbb{R}$ be the periodic function with period $2pi$ defined by
$$f(x):=begin{cases}+1&text{if }xin(0,+pi),,\0&text{if }xin{-pi,0,+pi},,\-1&text{if }xin(-pi,0),.end{cases}$$
Then, as $f$ is an odd function, $f$ has a Fourier sine-series:
$$f(x)=sum_{k=1}^infty,b_k,sin(kx)$$
for some real numbers $b_1,b_2,b_3,ldots$. We see that
$$begin{align}b_k&=frac{1}{pi},int_{-pi}^{+pi},sin(kx),f(x),text{d}x=frac{2}{pi},int_0^pi,sin(kx),text{d}x
\&=frac{2}{pi,k},Big.big(-cos(kx)big)Big|_{x=0}^{x=pi}=frac{2,big(1-(-1)^kbig)}{pi,k}
end{align}$$
for all $k=1,2,3,ldots$.
Consequently,
$$f(x)=sum_{k=1}^infty,frac{2,big(1-(-1)^kbig)}{pi,k},sin(kx)=frac{4}{pi},sum_{n=1}^infty,frac{sinbig((2n-1)xbig)}{2n-1},.$$
Because $fleft(dfrac{pi}{4}right)=1$, we get
$$1=frac{4}{pi},sum_{n=1}^infty,frac{sinleft(frac{(2n-1),pi}{4}right)}{2n-1}=frac{4}{pi},sum_{n=1}^infty,frac{(-1)^{n-1}}{2n-1},.$$
This shows that
$$sum_{n=1}^infty,frac{(-1)^n}{2n-1}=-frac{pi}{4},.$$
By (*), we conclude that
$$sum_{n=1}^infty,frac{(-1)^n}{4n^2-1}=frac{1}{2}-frac{pi}{4}=frac{2-pi}{4}approx -0.28539816,.$$
add a comment |
Here is my attempt to follow the instruction to use Fourier series. First, as you did, I rewrite the sum as
$$sum_{n=1}^infty,frac{(-1)^n}{4n^2-1}=sum_{n=1}^infty,frac{(-1)^n}{2}left(frac{1}{2n-1}-frac{1}{2n+1}right)=frac{1}{2}+sum_{n=1}^infty,frac{(-1)^n}{2n-1},.tag{*}$$
Let $f:mathbb{R}tomathbb{R}$ be the periodic function with period $2pi$ defined by
$$f(x):=begin{cases}+1&text{if }xin(0,+pi),,\0&text{if }xin{-pi,0,+pi},,\-1&text{if }xin(-pi,0),.end{cases}$$
Then, as $f$ is an odd function, $f$ has a Fourier sine-series:
$$f(x)=sum_{k=1}^infty,b_k,sin(kx)$$
for some real numbers $b_1,b_2,b_3,ldots$. We see that
$$begin{align}b_k&=frac{1}{pi},int_{-pi}^{+pi},sin(kx),f(x),text{d}x=frac{2}{pi},int_0^pi,sin(kx),text{d}x
\&=frac{2}{pi,k},Big.big(-cos(kx)big)Big|_{x=0}^{x=pi}=frac{2,big(1-(-1)^kbig)}{pi,k}
end{align}$$
for all $k=1,2,3,ldots$.
Consequently,
$$f(x)=sum_{k=1}^infty,frac{2,big(1-(-1)^kbig)}{pi,k},sin(kx)=frac{4}{pi},sum_{n=1}^infty,frac{sinbig((2n-1)xbig)}{2n-1},.$$
Because $fleft(dfrac{pi}{4}right)=1$, we get
$$1=frac{4}{pi},sum_{n=1}^infty,frac{sinleft(frac{(2n-1),pi}{4}right)}{2n-1}=frac{4}{pi},sum_{n=1}^infty,frac{(-1)^{n-1}}{2n-1},.$$
This shows that
$$sum_{n=1}^infty,frac{(-1)^n}{2n-1}=-frac{pi}{4},.$$
By (*), we conclude that
$$sum_{n=1}^infty,frac{(-1)^n}{4n^2-1}=frac{1}{2}-frac{pi}{4}=frac{2-pi}{4}approx -0.28539816,.$$
add a comment |
Here is my attempt to follow the instruction to use Fourier series. First, as you did, I rewrite the sum as
$$sum_{n=1}^infty,frac{(-1)^n}{4n^2-1}=sum_{n=1}^infty,frac{(-1)^n}{2}left(frac{1}{2n-1}-frac{1}{2n+1}right)=frac{1}{2}+sum_{n=1}^infty,frac{(-1)^n}{2n-1},.tag{*}$$
Let $f:mathbb{R}tomathbb{R}$ be the periodic function with period $2pi$ defined by
$$f(x):=begin{cases}+1&text{if }xin(0,+pi),,\0&text{if }xin{-pi,0,+pi},,\-1&text{if }xin(-pi,0),.end{cases}$$
Then, as $f$ is an odd function, $f$ has a Fourier sine-series:
$$f(x)=sum_{k=1}^infty,b_k,sin(kx)$$
for some real numbers $b_1,b_2,b_3,ldots$. We see that
$$begin{align}b_k&=frac{1}{pi},int_{-pi}^{+pi},sin(kx),f(x),text{d}x=frac{2}{pi},int_0^pi,sin(kx),text{d}x
\&=frac{2}{pi,k},Big.big(-cos(kx)big)Big|_{x=0}^{x=pi}=frac{2,big(1-(-1)^kbig)}{pi,k}
end{align}$$
for all $k=1,2,3,ldots$.
Consequently,
$$f(x)=sum_{k=1}^infty,frac{2,big(1-(-1)^kbig)}{pi,k},sin(kx)=frac{4}{pi},sum_{n=1}^infty,frac{sinbig((2n-1)xbig)}{2n-1},.$$
Because $fleft(dfrac{pi}{4}right)=1$, we get
$$1=frac{4}{pi},sum_{n=1}^infty,frac{sinleft(frac{(2n-1),pi}{4}right)}{2n-1}=frac{4}{pi},sum_{n=1}^infty,frac{(-1)^{n-1}}{2n-1},.$$
This shows that
$$sum_{n=1}^infty,frac{(-1)^n}{2n-1}=-frac{pi}{4},.$$
By (*), we conclude that
$$sum_{n=1}^infty,frac{(-1)^n}{4n^2-1}=frac{1}{2}-frac{pi}{4}=frac{2-pi}{4}approx -0.28539816,.$$
Here is my attempt to follow the instruction to use Fourier series. First, as you did, I rewrite the sum as
$$sum_{n=1}^infty,frac{(-1)^n}{4n^2-1}=sum_{n=1}^infty,frac{(-1)^n}{2}left(frac{1}{2n-1}-frac{1}{2n+1}right)=frac{1}{2}+sum_{n=1}^infty,frac{(-1)^n}{2n-1},.tag{*}$$
Let $f:mathbb{R}tomathbb{R}$ be the periodic function with period $2pi$ defined by
$$f(x):=begin{cases}+1&text{if }xin(0,+pi),,\0&text{if }xin{-pi,0,+pi},,\-1&text{if }xin(-pi,0),.end{cases}$$
Then, as $f$ is an odd function, $f$ has a Fourier sine-series:
$$f(x)=sum_{k=1}^infty,b_k,sin(kx)$$
for some real numbers $b_1,b_2,b_3,ldots$. We see that
$$begin{align}b_k&=frac{1}{pi},int_{-pi}^{+pi},sin(kx),f(x),text{d}x=frac{2}{pi},int_0^pi,sin(kx),text{d}x
\&=frac{2}{pi,k},Big.big(-cos(kx)big)Big|_{x=0}^{x=pi}=frac{2,big(1-(-1)^kbig)}{pi,k}
end{align}$$
for all $k=1,2,3,ldots$.
Consequently,
$$f(x)=sum_{k=1}^infty,frac{2,big(1-(-1)^kbig)}{pi,k},sin(kx)=frac{4}{pi},sum_{n=1}^infty,frac{sinbig((2n-1)xbig)}{2n-1},.$$
Because $fleft(dfrac{pi}{4}right)=1$, we get
$$1=frac{4}{pi},sum_{n=1}^infty,frac{sinleft(frac{(2n-1),pi}{4}right)}{2n-1}=frac{4}{pi},sum_{n=1}^infty,frac{(-1)^{n-1}}{2n-1},.$$
This shows that
$$sum_{n=1}^infty,frac{(-1)^n}{2n-1}=-frac{pi}{4},.$$
By (*), we conclude that
$$sum_{n=1}^infty,frac{(-1)^n}{4n^2-1}=frac{1}{2}-frac{pi}{4}=frac{2-pi}{4}approx -0.28539816,.$$
answered Nov 22 at 20:16
Batominovski
33.7k33292
33.7k33292
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996476%2finteresting-proofs-of-this-sum%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
and what is your question?
– Masacroso
Nov 13 at 8:31
3
@Masacroso MSE has explicitly said that asking your own question and answering with an interesting result is well-received, albeit uncommon. I also asked if anyone else had nice approaches to this specific question
– Lanier Freeman
Nov 13 at 8:43