Bounded operator but not Compact

Multi tool use
Multi tool use












2












$begingroup$


Let $T : (C([-1,1]),||.||_{infty}) rightarrow (C([-1,1]),||.||_{infty}) $



Such as : $(Tf)(x)=frac{1}{2}(f(x)+f(-x))$ . For all $fin C([-1,1])$



Why $T$ isn't Compact ?



I tried to use the sequence $f_n(x)=x^n$. For $xin [-1,1]$.



But I couldn't prove that $(T(f_n))_n$ has no convergent subsequence.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    It has a convergent subsequence: $lim_{ntoinfty}T(f_{2n-1})=0$.
    $endgroup$
    – José Carlos Santos
    Dec 2 '18 at 17:15
















2












$begingroup$


Let $T : (C([-1,1]),||.||_{infty}) rightarrow (C([-1,1]),||.||_{infty}) $



Such as : $(Tf)(x)=frac{1}{2}(f(x)+f(-x))$ . For all $fin C([-1,1])$



Why $T$ isn't Compact ?



I tried to use the sequence $f_n(x)=x^n$. For $xin [-1,1]$.



But I couldn't prove that $(T(f_n))_n$ has no convergent subsequence.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    It has a convergent subsequence: $lim_{ntoinfty}T(f_{2n-1})=0$.
    $endgroup$
    – José Carlos Santos
    Dec 2 '18 at 17:15














2












2








2


1



$begingroup$


Let $T : (C([-1,1]),||.||_{infty}) rightarrow (C([-1,1]),||.||_{infty}) $



Such as : $(Tf)(x)=frac{1}{2}(f(x)+f(-x))$ . For all $fin C([-1,1])$



Why $T$ isn't Compact ?



I tried to use the sequence $f_n(x)=x^n$. For $xin [-1,1]$.



But I couldn't prove that $(T(f_n))_n$ has no convergent subsequence.










share|cite|improve this question









$endgroup$




Let $T : (C([-1,1]),||.||_{infty}) rightarrow (C([-1,1]),||.||_{infty}) $



Such as : $(Tf)(x)=frac{1}{2}(f(x)+f(-x))$ . For all $fin C([-1,1])$



Why $T$ isn't Compact ?



I tried to use the sequence $f_n(x)=x^n$. For $xin [-1,1]$.



But I couldn't prove that $(T(f_n))_n$ has no convergent subsequence.







functional-analysis operator-theory compact-operators unbounded-operators






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 2 '18 at 17:10









Anas BOUALIIAnas BOUALII

1337




1337








  • 1




    $begingroup$
    It has a convergent subsequence: $lim_{ntoinfty}T(f_{2n-1})=0$.
    $endgroup$
    – José Carlos Santos
    Dec 2 '18 at 17:15














  • 1




    $begingroup$
    It has a convergent subsequence: $lim_{ntoinfty}T(f_{2n-1})=0$.
    $endgroup$
    – José Carlos Santos
    Dec 2 '18 at 17:15








1




1




$begingroup$
It has a convergent subsequence: $lim_{ntoinfty}T(f_{2n-1})=0$.
$endgroup$
– José Carlos Santos
Dec 2 '18 at 17:15




$begingroup$
It has a convergent subsequence: $lim_{ntoinfty}T(f_{2n-1})=0$.
$endgroup$
– José Carlos Santos
Dec 2 '18 at 17:15










1 Answer
1






active

oldest

votes


















3












$begingroup$

Hint: Instead, try
$$ f_n(x) = x^{2n}, $$
and observe that any subsequence of $Tf_n=f_n$ converges pointwise to a discontinuous function.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022907%2fbounded-operator-but-not-compact%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Hint: Instead, try
    $$ f_n(x) = x^{2n}, $$
    and observe that any subsequence of $Tf_n=f_n$ converges pointwise to a discontinuous function.






    share|cite|improve this answer









    $endgroup$


















      3












      $begingroup$

      Hint: Instead, try
      $$ f_n(x) = x^{2n}, $$
      and observe that any subsequence of $Tf_n=f_n$ converges pointwise to a discontinuous function.






      share|cite|improve this answer









      $endgroup$
















        3












        3








        3





        $begingroup$

        Hint: Instead, try
        $$ f_n(x) = x^{2n}, $$
        and observe that any subsequence of $Tf_n=f_n$ converges pointwise to a discontinuous function.






        share|cite|improve this answer









        $endgroup$



        Hint: Instead, try
        $$ f_n(x) = x^{2n}, $$
        and observe that any subsequence of $Tf_n=f_n$ converges pointwise to a discontinuous function.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 2 '18 at 17:13









        MisterRiemannMisterRiemann

        5,8451624




        5,8451624






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022907%2fbounded-operator-but-not-compact%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            j,5oME3qPBUWa4X7 gDE7j fAvn6nrSS O63VynEKt,Uw9tfzQz0tzDAlOfwSfDoiFfPSMtUGz9,74o7J IG1W,rb
            r57VHEfVOf7hIf6RM7 kPZGNAdThT5daC6Kcf0U3BoL QNJ5eXTxMwyao6v6wUT0mEeST9Im30KPHfcz kBYNo7bRDd

            Popular posts from this blog

            Plaza Victoria

            Puebla de Zaragoza

            Estelada