How to show that...












0












$begingroup$


Wolfram Alpha gives me that
$$begin{align}
sqrt{1+i}&=sqrt[4]{2}cosleft(frac{1}{2}tan^{-1}(1)right)+isqrt[4]{2}sinleft(frac{1}{2}tan^{-1}(1)right)\
&=sqrt[4]{2}e^{frac{1}{2}itan^{-1}(1)}\
sqrt{1+2i}&=sqrt[4]{5}cosleft(frac{1}{2}tan^{-1}(2)right)+isqrt[4]{5}sinleft(frac{1}{2}tan^{-1}(2)right)\
&=sqrt[4]{5}e^{frac{1}{2}itan^{-1}(2)}\
sqrt{1+3i}&=sqrt[4]{10}cosleft(frac{1}{2}tan^{-1}(3)right)+isqrt[4]{10}sinleft(frac{1}{2}tan^{-1}(3)right)\
&=sqrt[4]{10}e^{frac{1}{2}itan^{-1}(3)}
end{align}$$

In general, how can we show that
$$begin{align}
sqrt{1+ni}&=sqrt[4]{n^2+1}cosleft(frac{1}{2}tan^{-1}(n)right)+isqrt[4]{n^2+1}sinleft(frac{1}{2}tan^{-1}(n)right)\
&=sqrt[4]{n^2+1}e^{frac{1}{2}itan^{-1}(n)}
end{align}$$



I tried to draw a complex plane, but it did not help significantly. Perhaps I forgot some fundamental concepts. Any hints?










share|cite|improve this question









$endgroup$








  • 4




    $begingroup$
    Hint: write $1+i n$ in polar form, that is as $r exp(iphi)$. What is $r$, what is $phi$?
    $endgroup$
    – Fabian
    Dec 2 '18 at 16:31










  • $begingroup$
    Thanks Fabian, I think I have figured it out.
    $endgroup$
    – Larry
    Dec 2 '18 at 16:37
















0












$begingroup$


Wolfram Alpha gives me that
$$begin{align}
sqrt{1+i}&=sqrt[4]{2}cosleft(frac{1}{2}tan^{-1}(1)right)+isqrt[4]{2}sinleft(frac{1}{2}tan^{-1}(1)right)\
&=sqrt[4]{2}e^{frac{1}{2}itan^{-1}(1)}\
sqrt{1+2i}&=sqrt[4]{5}cosleft(frac{1}{2}tan^{-1}(2)right)+isqrt[4]{5}sinleft(frac{1}{2}tan^{-1}(2)right)\
&=sqrt[4]{5}e^{frac{1}{2}itan^{-1}(2)}\
sqrt{1+3i}&=sqrt[4]{10}cosleft(frac{1}{2}tan^{-1}(3)right)+isqrt[4]{10}sinleft(frac{1}{2}tan^{-1}(3)right)\
&=sqrt[4]{10}e^{frac{1}{2}itan^{-1}(3)}
end{align}$$

In general, how can we show that
$$begin{align}
sqrt{1+ni}&=sqrt[4]{n^2+1}cosleft(frac{1}{2}tan^{-1}(n)right)+isqrt[4]{n^2+1}sinleft(frac{1}{2}tan^{-1}(n)right)\
&=sqrt[4]{n^2+1}e^{frac{1}{2}itan^{-1}(n)}
end{align}$$



I tried to draw a complex plane, but it did not help significantly. Perhaps I forgot some fundamental concepts. Any hints?










share|cite|improve this question









$endgroup$








  • 4




    $begingroup$
    Hint: write $1+i n$ in polar form, that is as $r exp(iphi)$. What is $r$, what is $phi$?
    $endgroup$
    – Fabian
    Dec 2 '18 at 16:31










  • $begingroup$
    Thanks Fabian, I think I have figured it out.
    $endgroup$
    – Larry
    Dec 2 '18 at 16:37














0












0








0





$begingroup$


Wolfram Alpha gives me that
$$begin{align}
sqrt{1+i}&=sqrt[4]{2}cosleft(frac{1}{2}tan^{-1}(1)right)+isqrt[4]{2}sinleft(frac{1}{2}tan^{-1}(1)right)\
&=sqrt[4]{2}e^{frac{1}{2}itan^{-1}(1)}\
sqrt{1+2i}&=sqrt[4]{5}cosleft(frac{1}{2}tan^{-1}(2)right)+isqrt[4]{5}sinleft(frac{1}{2}tan^{-1}(2)right)\
&=sqrt[4]{5}e^{frac{1}{2}itan^{-1}(2)}\
sqrt{1+3i}&=sqrt[4]{10}cosleft(frac{1}{2}tan^{-1}(3)right)+isqrt[4]{10}sinleft(frac{1}{2}tan^{-1}(3)right)\
&=sqrt[4]{10}e^{frac{1}{2}itan^{-1}(3)}
end{align}$$

In general, how can we show that
$$begin{align}
sqrt{1+ni}&=sqrt[4]{n^2+1}cosleft(frac{1}{2}tan^{-1}(n)right)+isqrt[4]{n^2+1}sinleft(frac{1}{2}tan^{-1}(n)right)\
&=sqrt[4]{n^2+1}e^{frac{1}{2}itan^{-1}(n)}
end{align}$$



I tried to draw a complex plane, but it did not help significantly. Perhaps I forgot some fundamental concepts. Any hints?










share|cite|improve this question









$endgroup$




Wolfram Alpha gives me that
$$begin{align}
sqrt{1+i}&=sqrt[4]{2}cosleft(frac{1}{2}tan^{-1}(1)right)+isqrt[4]{2}sinleft(frac{1}{2}tan^{-1}(1)right)\
&=sqrt[4]{2}e^{frac{1}{2}itan^{-1}(1)}\
sqrt{1+2i}&=sqrt[4]{5}cosleft(frac{1}{2}tan^{-1}(2)right)+isqrt[4]{5}sinleft(frac{1}{2}tan^{-1}(2)right)\
&=sqrt[4]{5}e^{frac{1}{2}itan^{-1}(2)}\
sqrt{1+3i}&=sqrt[4]{10}cosleft(frac{1}{2}tan^{-1}(3)right)+isqrt[4]{10}sinleft(frac{1}{2}tan^{-1}(3)right)\
&=sqrt[4]{10}e^{frac{1}{2}itan^{-1}(3)}
end{align}$$

In general, how can we show that
$$begin{align}
sqrt{1+ni}&=sqrt[4]{n^2+1}cosleft(frac{1}{2}tan^{-1}(n)right)+isqrt[4]{n^2+1}sinleft(frac{1}{2}tan^{-1}(n)right)\
&=sqrt[4]{n^2+1}e^{frac{1}{2}itan^{-1}(n)}
end{align}$$



I tried to draw a complex plane, but it did not help significantly. Perhaps I forgot some fundamental concepts. Any hints?







complex-analysis radicals






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 2 '18 at 16:26









LarryLarry

2,27231028




2,27231028








  • 4




    $begingroup$
    Hint: write $1+i n$ in polar form, that is as $r exp(iphi)$. What is $r$, what is $phi$?
    $endgroup$
    – Fabian
    Dec 2 '18 at 16:31










  • $begingroup$
    Thanks Fabian, I think I have figured it out.
    $endgroup$
    – Larry
    Dec 2 '18 at 16:37














  • 4




    $begingroup$
    Hint: write $1+i n$ in polar form, that is as $r exp(iphi)$. What is $r$, what is $phi$?
    $endgroup$
    – Fabian
    Dec 2 '18 at 16:31










  • $begingroup$
    Thanks Fabian, I think I have figured it out.
    $endgroup$
    – Larry
    Dec 2 '18 at 16:37








4




4




$begingroup$
Hint: write $1+i n$ in polar form, that is as $r exp(iphi)$. What is $r$, what is $phi$?
$endgroup$
– Fabian
Dec 2 '18 at 16:31




$begingroup$
Hint: write $1+i n$ in polar form, that is as $r exp(iphi)$. What is $r$, what is $phi$?
$endgroup$
– Fabian
Dec 2 '18 at 16:31












$begingroup$
Thanks Fabian, I think I have figured it out.
$endgroup$
– Larry
Dec 2 '18 at 16:37




$begingroup$
Thanks Fabian, I think I have figured it out.
$endgroup$
– Larry
Dec 2 '18 at 16:37










2 Answers
2






active

oldest

votes


















1












$begingroup$

From the polar form $$z=sqrt{n^2+1},e^{iarctan n}$$ you draw



$$sqrt z=pmsqrt[4]{n^2+1},e^{iarctan n,/2}.$$



Then back to Cartesian coordinates,



$$pmsqrt[4]{n^2+1}left(cosfrac{arctan n}2+isinfrac{arctan n}2right).$$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    $$begin{align}
    z&=1+ni,~r=sqrt{n^2+1}\
    1+ni &=sqrt{n^2+1}cos(tan^{-1}(n))+isqrt{n^2+1}sin(tan^{-1}(n))\
    &= sqrt{n^2+1}e^{itan^{-1}(n)}\
    sqrt{1+ni}&=sqrt[4]{n^2+1}e^{frac{1}{2}tan^{-1}(n)}\
    &=sqrt[4]{n^2+1}cosleft(frac{1}{2}tan^{-1}(n)right)+isqrt[4]{n^2+1}sinleft(frac{1}{2}tan^{-1}(n)right)
    end{align}$$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022841%2fhow-to-show-that-sqrt1ni-sqrt4n21-cos-left-frac12-tan-1n-r%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      From the polar form $$z=sqrt{n^2+1},e^{iarctan n}$$ you draw



      $$sqrt z=pmsqrt[4]{n^2+1},e^{iarctan n,/2}.$$



      Then back to Cartesian coordinates,



      $$pmsqrt[4]{n^2+1}left(cosfrac{arctan n}2+isinfrac{arctan n}2right).$$






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        From the polar form $$z=sqrt{n^2+1},e^{iarctan n}$$ you draw



        $$sqrt z=pmsqrt[4]{n^2+1},e^{iarctan n,/2}.$$



        Then back to Cartesian coordinates,



        $$pmsqrt[4]{n^2+1}left(cosfrac{arctan n}2+isinfrac{arctan n}2right).$$






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          From the polar form $$z=sqrt{n^2+1},e^{iarctan n}$$ you draw



          $$sqrt z=pmsqrt[4]{n^2+1},e^{iarctan n,/2}.$$



          Then back to Cartesian coordinates,



          $$pmsqrt[4]{n^2+1}left(cosfrac{arctan n}2+isinfrac{arctan n}2right).$$






          share|cite|improve this answer









          $endgroup$



          From the polar form $$z=sqrt{n^2+1},e^{iarctan n}$$ you draw



          $$sqrt z=pmsqrt[4]{n^2+1},e^{iarctan n,/2}.$$



          Then back to Cartesian coordinates,



          $$pmsqrt[4]{n^2+1}left(cosfrac{arctan n}2+isinfrac{arctan n}2right).$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 2 '18 at 16:55









          Yves DaoustYves Daoust

          125k671223




          125k671223























              0












              $begingroup$

              $$begin{align}
              z&=1+ni,~r=sqrt{n^2+1}\
              1+ni &=sqrt{n^2+1}cos(tan^{-1}(n))+isqrt{n^2+1}sin(tan^{-1}(n))\
              &= sqrt{n^2+1}e^{itan^{-1}(n)}\
              sqrt{1+ni}&=sqrt[4]{n^2+1}e^{frac{1}{2}tan^{-1}(n)}\
              &=sqrt[4]{n^2+1}cosleft(frac{1}{2}tan^{-1}(n)right)+isqrt[4]{n^2+1}sinleft(frac{1}{2}tan^{-1}(n)right)
              end{align}$$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                $$begin{align}
                z&=1+ni,~r=sqrt{n^2+1}\
                1+ni &=sqrt{n^2+1}cos(tan^{-1}(n))+isqrt{n^2+1}sin(tan^{-1}(n))\
                &= sqrt{n^2+1}e^{itan^{-1}(n)}\
                sqrt{1+ni}&=sqrt[4]{n^2+1}e^{frac{1}{2}tan^{-1}(n)}\
                &=sqrt[4]{n^2+1}cosleft(frac{1}{2}tan^{-1}(n)right)+isqrt[4]{n^2+1}sinleft(frac{1}{2}tan^{-1}(n)right)
                end{align}$$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  $$begin{align}
                  z&=1+ni,~r=sqrt{n^2+1}\
                  1+ni &=sqrt{n^2+1}cos(tan^{-1}(n))+isqrt{n^2+1}sin(tan^{-1}(n))\
                  &= sqrt{n^2+1}e^{itan^{-1}(n)}\
                  sqrt{1+ni}&=sqrt[4]{n^2+1}e^{frac{1}{2}tan^{-1}(n)}\
                  &=sqrt[4]{n^2+1}cosleft(frac{1}{2}tan^{-1}(n)right)+isqrt[4]{n^2+1}sinleft(frac{1}{2}tan^{-1}(n)right)
                  end{align}$$






                  share|cite|improve this answer









                  $endgroup$



                  $$begin{align}
                  z&=1+ni,~r=sqrt{n^2+1}\
                  1+ni &=sqrt{n^2+1}cos(tan^{-1}(n))+isqrt{n^2+1}sin(tan^{-1}(n))\
                  &= sqrt{n^2+1}e^{itan^{-1}(n)}\
                  sqrt{1+ni}&=sqrt[4]{n^2+1}e^{frac{1}{2}tan^{-1}(n)}\
                  &=sqrt[4]{n^2+1}cosleft(frac{1}{2}tan^{-1}(n)right)+isqrt[4]{n^2+1}sinleft(frac{1}{2}tan^{-1}(n)right)
                  end{align}$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 2 '18 at 16:48









                  LarryLarry

                  2,27231028




                  2,27231028






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022841%2fhow-to-show-that-sqrt1ni-sqrt4n21-cos-left-frac12-tan-1n-r%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Plaza Victoria

                      Puebla de Zaragoza

                      Musa