Complex Endomorphism $f$ with orthogonal Eigenspaces implies that $f$ is unitary












1












$begingroup$


I already posted this question earlier today without much success. After 3 hours and only 10 views I decided to give it another shot :) Of course I'll delete the second post!



Let $V ne 0$ be an finite-dimensional inner complex vectorspace and $f$ an endomorphism on said space such that there exists a $m in mathbb{N}_{ge 1}$ with $f^m=id_V$. Given that all eigenspaces are orthogonal, I have to show that $f$ is unitary. The converse I already have proven.



I thought about starting with $f^m=id_V$:



If we take an eigenvector $x$ to the eigenvalue $λ$ we get: $f(x)=λx$, therefore $f^m(x)=λ^mx$. But $f^m(x)=x$ since $f^m=id_V$. Together: $λ^mx=x$, so: $λ^m=1$.



It follows that all eigenvalues of $f$ are $m$-th roots of unity and then: $bar{lambda}=1/λ$



This is the part where I unfortunately get stuck on :P



Any Ideas?



~Cedric :)










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    I already posted this question earlier today without much success. After 3 hours and only 10 views I decided to give it another shot :) Of course I'll delete the second post!



    Let $V ne 0$ be an finite-dimensional inner complex vectorspace and $f$ an endomorphism on said space such that there exists a $m in mathbb{N}_{ge 1}$ with $f^m=id_V$. Given that all eigenspaces are orthogonal, I have to show that $f$ is unitary. The converse I already have proven.



    I thought about starting with $f^m=id_V$:



    If we take an eigenvector $x$ to the eigenvalue $λ$ we get: $f(x)=λx$, therefore $f^m(x)=λ^mx$. But $f^m(x)=x$ since $f^m=id_V$. Together: $λ^mx=x$, so: $λ^m=1$.



    It follows that all eigenvalues of $f$ are $m$-th roots of unity and then: $bar{lambda}=1/λ$



    This is the part where I unfortunately get stuck on :P



    Any Ideas?



    ~Cedric :)










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      I already posted this question earlier today without much success. After 3 hours and only 10 views I decided to give it another shot :) Of course I'll delete the second post!



      Let $V ne 0$ be an finite-dimensional inner complex vectorspace and $f$ an endomorphism on said space such that there exists a $m in mathbb{N}_{ge 1}$ with $f^m=id_V$. Given that all eigenspaces are orthogonal, I have to show that $f$ is unitary. The converse I already have proven.



      I thought about starting with $f^m=id_V$:



      If we take an eigenvector $x$ to the eigenvalue $λ$ we get: $f(x)=λx$, therefore $f^m(x)=λ^mx$. But $f^m(x)=x$ since $f^m=id_V$. Together: $λ^mx=x$, so: $λ^m=1$.



      It follows that all eigenvalues of $f$ are $m$-th roots of unity and then: $bar{lambda}=1/λ$



      This is the part where I unfortunately get stuck on :P



      Any Ideas?



      ~Cedric :)










      share|cite|improve this question









      $endgroup$




      I already posted this question earlier today without much success. After 3 hours and only 10 views I decided to give it another shot :) Of course I'll delete the second post!



      Let $V ne 0$ be an finite-dimensional inner complex vectorspace and $f$ an endomorphism on said space such that there exists a $m in mathbb{N}_{ge 1}$ with $f^m=id_V$. Given that all eigenspaces are orthogonal, I have to show that $f$ is unitary. The converse I already have proven.



      I thought about starting with $f^m=id_V$:



      If we take an eigenvector $x$ to the eigenvalue $λ$ we get: $f(x)=λx$, therefore $f^m(x)=λ^mx$. But $f^m(x)=x$ since $f^m=id_V$. Together: $λ^mx=x$, so: $λ^m=1$.



      It follows that all eigenvalues of $f$ are $m$-th roots of unity and then: $bar{lambda}=1/λ$



      This is the part where I unfortunately get stuck on :P



      Any Ideas?



      ~Cedric :)







      eigenvalues-eigenvectors orthogonality roots-of-unity






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 2 '18 at 16:23









      C. BrendelC. Brendel

      518




      518






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022838%2fcomplex-endomorphism-f-with-orthogonal-eigenspaces-implies-that-f-is-unitary%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022838%2fcomplex-endomorphism-f-with-orthogonal-eigenspaces-implies-that-f-is-unitary%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Plaza Victoria

          Puebla de Zaragoza

          Musa