Distributing a matrix
$begingroup$
Since matrix mutiplication is not commutative, the two ways in which you can factorize matrices makes a difference in which side the factor goes on.
In particular, if I want to distribute
$$((I - A) + A)(I - A)^{-1},$$
would it become
$$(I - A)(I - A)^{-1} + A(I - A)^{-1} $$
OR would it be
$$(I - A)^{-1}(I - A) + (I - A)^{-1}A?$$
How do I know which side it goes on? I think the first one is correct.
linear-algebra
$endgroup$
add a comment |
$begingroup$
Since matrix mutiplication is not commutative, the two ways in which you can factorize matrices makes a difference in which side the factor goes on.
In particular, if I want to distribute
$$((I - A) + A)(I - A)^{-1},$$
would it become
$$(I - A)(I - A)^{-1} + A(I - A)^{-1} $$
OR would it be
$$(I - A)^{-1}(I - A) + (I - A)^{-1}A?$$
How do I know which side it goes on? I think the first one is correct.
linear-algebra
$endgroup$
add a comment |
$begingroup$
Since matrix mutiplication is not commutative, the two ways in which you can factorize matrices makes a difference in which side the factor goes on.
In particular, if I want to distribute
$$((I - A) + A)(I - A)^{-1},$$
would it become
$$(I - A)(I - A)^{-1} + A(I - A)^{-1} $$
OR would it be
$$(I - A)^{-1}(I - A) + (I - A)^{-1}A?$$
How do I know which side it goes on? I think the first one is correct.
linear-algebra
$endgroup$
Since matrix mutiplication is not commutative, the two ways in which you can factorize matrices makes a difference in which side the factor goes on.
In particular, if I want to distribute
$$((I - A) + A)(I - A)^{-1},$$
would it become
$$(I - A)(I - A)^{-1} + A(I - A)^{-1} $$
OR would it be
$$(I - A)^{-1}(I - A) + (I - A)^{-1}A?$$
How do I know which side it goes on? I think the first one is correct.
linear-algebra
linear-algebra
asked Apr 11 at 2:15
user646175
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.
Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by
$$a cdot (b+c) = acdot b + a cdot c$$
Similarly, right-distributivity is given by
$$(b+c)cdot a = bcdot a + ccdot a$$
Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.
In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).
So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have
$$(B+C)A = BA + CA$$
Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.
$endgroup$
add a comment |
$begingroup$
Your first answer is correct. There are two distributive laws for matrices,
$$A(B+C)=AB+ACquadhbox{and}quad (A+B)C=AC+BC ,$$
but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3183231%2fdistributing-a-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.
Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by
$$a cdot (b+c) = acdot b + a cdot c$$
Similarly, right-distributivity is given by
$$(b+c)cdot a = bcdot a + ccdot a$$
Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.
In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).
So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have
$$(B+C)A = BA + CA$$
Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.
$endgroup$
add a comment |
$begingroup$
In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.
Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by
$$a cdot (b+c) = acdot b + a cdot c$$
Similarly, right-distributivity is given by
$$(b+c)cdot a = bcdot a + ccdot a$$
Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.
In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).
So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have
$$(B+C)A = BA + CA$$
Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.
$endgroup$
add a comment |
$begingroup$
In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.
Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by
$$a cdot (b+c) = acdot b + a cdot c$$
Similarly, right-distributivity is given by
$$(b+c)cdot a = bcdot a + ccdot a$$
Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.
In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).
So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have
$$(B+C)A = BA + CA$$
Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.
$endgroup$
In general, this is what we call "right distributivity" - I usually hear the context for this in the sense of ring axioms. Let's sojourn into this a bit - though if you're not familiar with abstract algebra, this won't be particularly enlightening, and you might be better off skipping to the very end.
Let $(R,+,cdot,0,1)$ be a ring; then we call left-distributivity and define it by
$$a cdot (b+c) = acdot b + a cdot c$$
Similarly, right-distributivity is given by
$$(b+c)cdot a = bcdot a + ccdot a$$
Note: we are not guaranteed that $acdot b = bcdot a$ unless $R$ is a commutative ring.
In the context of matrices over rings, for which I reference Wikipedia, you can define $M_n(R)$ as the $ntimes n$ matrices over a ring $R$ (i.e. its elements come from the ring, and the addition and multiplication of elements are shared). Notably, we have that $M_n(R)$ is a commutative ring if and only if $R$ is a commutative ring and $n=1$ (so basically effectively no different from working in the ring in question).
So what does this mean? This means, in your case, you probably do not have $AB=BA$ (of course, I imagine you know this). And thus in the context of the distributivity thigns above, you would have
$$(B+C)A = BA + CA$$
Your example has $B = I-A$ and $C=A$. And thus, your first example is correct: if you are distributing something on the right side, and cannot ensure commutativity, you should multiply that element by everything in the brackets on the right side.
answered Apr 11 at 2:26
Eevee TrainerEevee Trainer
10.5k31842
10.5k31842
add a comment |
add a comment |
$begingroup$
Your first answer is correct. There are two distributive laws for matrices,
$$A(B+C)=AB+ACquadhbox{and}quad (A+B)C=AC+BC ,$$
but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....
$endgroup$
add a comment |
$begingroup$
Your first answer is correct. There are two distributive laws for matrices,
$$A(B+C)=AB+ACquadhbox{and}quad (A+B)C=AC+BC ,$$
but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....
$endgroup$
add a comment |
$begingroup$
Your first answer is correct. There are two distributive laws for matrices,
$$A(B+C)=AB+ACquadhbox{and}quad (A+B)C=AC+BC ,$$
but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....
$endgroup$
Your first answer is correct. There are two distributive laws for matrices,
$$A(B+C)=AB+ACquadhbox{and}quad (A+B)C=AC+BC ,$$
but not $A(B+C)=BA+CA$ or $(A+B)C=AC+CB$ or.....
answered Apr 11 at 2:27
DavidDavid
69.9k668131
69.9k668131
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3183231%2fdistributing-a-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown