Divergence of a dot product of tensor and vector












0












$begingroup$


Hei, I am trying to derive energy equation from Navier-Stokes equation and I come across this:
$$nabla.(sigma.v)=(nabla.sigma).v +sigma:nabla v$$
$sigma $ is the stress tensor



V :is the velocity vector



Could anyone thankfully explain this and if that is correct?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Hei, I am trying to derive energy equation from Navier-Stokes equation and I come across this:
    $$nabla.(sigma.v)=(nabla.sigma).v +sigma:nabla v$$
    $sigma $ is the stress tensor



    V :is the velocity vector



    Could anyone thankfully explain this and if that is correct?










    share|cite|improve this question











    $endgroup$















      0












      0








      0


      1



      $begingroup$


      Hei, I am trying to derive energy equation from Navier-Stokes equation and I come across this:
      $$nabla.(sigma.v)=(nabla.sigma).v +sigma:nabla v$$
      $sigma $ is the stress tensor



      V :is the velocity vector



      Could anyone thankfully explain this and if that is correct?










      share|cite|improve this question











      $endgroup$




      Hei, I am trying to derive energy equation from Navier-Stokes equation and I come across this:
      $$nabla.(sigma.v)=(nabla.sigma).v +sigma:nabla v$$
      $sigma $ is the stress tensor



      V :is the velocity vector



      Could anyone thankfully explain this and if that is correct?







      vector-analysis tensors classical-mechanics






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 22 '18 at 16:22









      Harry49

      8,80831346




      8,80831346










      asked Nov 23 '18 at 14:39









      F.OF.O

      788




      788






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Let us consider an orthonormal basis of the euclidean space. The divergence reads
          begin{aligned}
          nablacdot (sigmacdot v) &= (sigma_{ij} v_j)_{,i} \ &= sigma_{ij,i} v_j + sigma_{ij} v_{j,i} \
          &= sigma_{ji,i} v_j + sigma_{ji} v_{j,i} \
          &= (nablacdotsigma)cdot v + sigma : nabla v
          end{aligned}

          using Einstein notation and the symmetry of the stress tensor.






          share|cite|improve this answer









          $endgroup$














            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010434%2fdivergence-of-a-dot-product-of-tensor-and-vector%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Let us consider an orthonormal basis of the euclidean space. The divergence reads
            begin{aligned}
            nablacdot (sigmacdot v) &= (sigma_{ij} v_j)_{,i} \ &= sigma_{ij,i} v_j + sigma_{ij} v_{j,i} \
            &= sigma_{ji,i} v_j + sigma_{ji} v_{j,i} \
            &= (nablacdotsigma)cdot v + sigma : nabla v
            end{aligned}

            using Einstein notation and the symmetry of the stress tensor.






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              Let us consider an orthonormal basis of the euclidean space. The divergence reads
              begin{aligned}
              nablacdot (sigmacdot v) &= (sigma_{ij} v_j)_{,i} \ &= sigma_{ij,i} v_j + sigma_{ij} v_{j,i} \
              &= sigma_{ji,i} v_j + sigma_{ji} v_{j,i} \
              &= (nablacdotsigma)cdot v + sigma : nabla v
              end{aligned}

              using Einstein notation and the symmetry of the stress tensor.






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                Let us consider an orthonormal basis of the euclidean space. The divergence reads
                begin{aligned}
                nablacdot (sigmacdot v) &= (sigma_{ij} v_j)_{,i} \ &= sigma_{ij,i} v_j + sigma_{ij} v_{j,i} \
                &= sigma_{ji,i} v_j + sigma_{ji} v_{j,i} \
                &= (nablacdotsigma)cdot v + sigma : nabla v
                end{aligned}

                using Einstein notation and the symmetry of the stress tensor.






                share|cite|improve this answer









                $endgroup$



                Let us consider an orthonormal basis of the euclidean space. The divergence reads
                begin{aligned}
                nablacdot (sigmacdot v) &= (sigma_{ij} v_j)_{,i} \ &= sigma_{ij,i} v_j + sigma_{ij} v_{j,i} \
                &= sigma_{ji,i} v_j + sigma_{ji} v_{j,i} \
                &= (nablacdotsigma)cdot v + sigma : nabla v
                end{aligned}

                using Einstein notation and the symmetry of the stress tensor.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 22 '18 at 16:21









                Harry49Harry49

                8,80831346




                8,80831346






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010434%2fdivergence-of-a-dot-product-of-tensor-and-vector%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Plaza Victoria

                    Puebla de Zaragoza

                    Musa