$sum_{n=0}^infty (sqrt[3]{n+1} - sqrt[3]{n})^alpha (2+n^4)^beta$ convergence/divergence
$begingroup$
I am trying to analyze the convergence/divergence of:
$sum_{n=0}^infty (sqrt[3]{n+1} - sqrt[3]{n})^alpha (2+n^4)^beta$
depending on $alpha$ and $beta$. This is how far I have gone:
First i have changed it a bit using $(a^3-b^3)=(a-b)(a^2+ab+b^2)$ and i have studied this: $sum_{n=0}^infty frac{(2+n^4)^beta}{((n+1)^{2/3} + (n(n+1))^{1/3} + n^{2/3})^alpha}$ . I used the limit-convergence test
$lim_{nto infty} frac{(2+n^4)^beta}{n^lambda((n+1)^{2/3} + (n(n+1))^{1/3} + n^{2/3})^alpha}=l$ and now I would have to chose $lambda$ so that $0lt l lt infty$. My problem comes now. If i choose $lambda= 4beta-frac{2}{3}alpha$ the limit shoud be finite and bigger than $0$. So now, would it be correct to say that if $-1 gt 4beta-frac{2}{3}alpha$ the series is convergent? If it is not correct, how should the problem be done? Thanks in advance.
sequences-and-series
$endgroup$
add a comment |
$begingroup$
I am trying to analyze the convergence/divergence of:
$sum_{n=0}^infty (sqrt[3]{n+1} - sqrt[3]{n})^alpha (2+n^4)^beta$
depending on $alpha$ and $beta$. This is how far I have gone:
First i have changed it a bit using $(a^3-b^3)=(a-b)(a^2+ab+b^2)$ and i have studied this: $sum_{n=0}^infty frac{(2+n^4)^beta}{((n+1)^{2/3} + (n(n+1))^{1/3} + n^{2/3})^alpha}$ . I used the limit-convergence test
$lim_{nto infty} frac{(2+n^4)^beta}{n^lambda((n+1)^{2/3} + (n(n+1))^{1/3} + n^{2/3})^alpha}=l$ and now I would have to chose $lambda$ so that $0lt l lt infty$. My problem comes now. If i choose $lambda= 4beta-frac{2}{3}alpha$ the limit shoud be finite and bigger than $0$. So now, would it be correct to say that if $-1 gt 4beta-frac{2}{3}alpha$ the series is convergent? If it is not correct, how should the problem be done? Thanks in advance.
sequences-and-series
$endgroup$
$begingroup$
@Clayton $a=sqrt[3]{n+1}$ and $b=sqrt[3]{n}$
$endgroup$
– Andarrkor
Dec 24 '18 at 20:57
add a comment |
$begingroup$
I am trying to analyze the convergence/divergence of:
$sum_{n=0}^infty (sqrt[3]{n+1} - sqrt[3]{n})^alpha (2+n^4)^beta$
depending on $alpha$ and $beta$. This is how far I have gone:
First i have changed it a bit using $(a^3-b^3)=(a-b)(a^2+ab+b^2)$ and i have studied this: $sum_{n=0}^infty frac{(2+n^4)^beta}{((n+1)^{2/3} + (n(n+1))^{1/3} + n^{2/3})^alpha}$ . I used the limit-convergence test
$lim_{nto infty} frac{(2+n^4)^beta}{n^lambda((n+1)^{2/3} + (n(n+1))^{1/3} + n^{2/3})^alpha}=l$ and now I would have to chose $lambda$ so that $0lt l lt infty$. My problem comes now. If i choose $lambda= 4beta-frac{2}{3}alpha$ the limit shoud be finite and bigger than $0$. So now, would it be correct to say that if $-1 gt 4beta-frac{2}{3}alpha$ the series is convergent? If it is not correct, how should the problem be done? Thanks in advance.
sequences-and-series
$endgroup$
I am trying to analyze the convergence/divergence of:
$sum_{n=0}^infty (sqrt[3]{n+1} - sqrt[3]{n})^alpha (2+n^4)^beta$
depending on $alpha$ and $beta$. This is how far I have gone:
First i have changed it a bit using $(a^3-b^3)=(a-b)(a^2+ab+b^2)$ and i have studied this: $sum_{n=0}^infty frac{(2+n^4)^beta}{((n+1)^{2/3} + (n(n+1))^{1/3} + n^{2/3})^alpha}$ . I used the limit-convergence test
$lim_{nto infty} frac{(2+n^4)^beta}{n^lambda((n+1)^{2/3} + (n(n+1))^{1/3} + n^{2/3})^alpha}=l$ and now I would have to chose $lambda$ so that $0lt l lt infty$. My problem comes now. If i choose $lambda= 4beta-frac{2}{3}alpha$ the limit shoud be finite and bigger than $0$. So now, would it be correct to say that if $-1 gt 4beta-frac{2}{3}alpha$ the series is convergent? If it is not correct, how should the problem be done? Thanks in advance.
sequences-and-series
sequences-and-series
asked Dec 24 '18 at 20:20
AndarrkorAndarrkor
466
466
$begingroup$
@Clayton $a=sqrt[3]{n+1}$ and $b=sqrt[3]{n}$
$endgroup$
– Andarrkor
Dec 24 '18 at 20:57
add a comment |
$begingroup$
@Clayton $a=sqrt[3]{n+1}$ and $b=sqrt[3]{n}$
$endgroup$
– Andarrkor
Dec 24 '18 at 20:57
$begingroup$
@Clayton $a=sqrt[3]{n+1}$ and $b=sqrt[3]{n}$
$endgroup$
– Andarrkor
Dec 24 '18 at 20:57
$begingroup$
@Clayton $a=sqrt[3]{n+1}$ and $b=sqrt[3]{n}$
$endgroup$
– Andarrkor
Dec 24 '18 at 20:57
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
It's much simpler using equivalents
$sqrt[3]{n+1}-sqrt[3]{n}=sqrt[3]{n}Bigl(sqrt[3]{1+dfrac 1n}-1Bigr)=sqrt[3]{n}dfrac1{3n}=dfrac1{3n^{tfrac23}}$, so
$$bigl(sqrt[3]{n+1} - sqrt[3]{n}bigr)^alphasim_{infty}dfrac1{3^alpha,n^{tfrac{2alpha}3}}.$$
$(2+n^4)^beta sim_infty n^{4beta}.$
Therefore,
$$bigl(sqrt[3]{n+1} - sqrt[3]{n}bigr)^alpha (2+n^4)^betasim_infty dfrac1{3^alpha,n^{tfrac{2alpha}3-4beta}}$$
and the latter, which is a $p$-series, converges if and only if $;dfrac{2alpha}3-4beta>1$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051599%2fsum-n-0-infty-sqrt3n1-sqrt3n-alpha-2n4-beta-convergen%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It's much simpler using equivalents
$sqrt[3]{n+1}-sqrt[3]{n}=sqrt[3]{n}Bigl(sqrt[3]{1+dfrac 1n}-1Bigr)=sqrt[3]{n}dfrac1{3n}=dfrac1{3n^{tfrac23}}$, so
$$bigl(sqrt[3]{n+1} - sqrt[3]{n}bigr)^alphasim_{infty}dfrac1{3^alpha,n^{tfrac{2alpha}3}}.$$
$(2+n^4)^beta sim_infty n^{4beta}.$
Therefore,
$$bigl(sqrt[3]{n+1} - sqrt[3]{n}bigr)^alpha (2+n^4)^betasim_infty dfrac1{3^alpha,n^{tfrac{2alpha}3-4beta}}$$
and the latter, which is a $p$-series, converges if and only if $;dfrac{2alpha}3-4beta>1$.
$endgroup$
add a comment |
$begingroup$
It's much simpler using equivalents
$sqrt[3]{n+1}-sqrt[3]{n}=sqrt[3]{n}Bigl(sqrt[3]{1+dfrac 1n}-1Bigr)=sqrt[3]{n}dfrac1{3n}=dfrac1{3n^{tfrac23}}$, so
$$bigl(sqrt[3]{n+1} - sqrt[3]{n}bigr)^alphasim_{infty}dfrac1{3^alpha,n^{tfrac{2alpha}3}}.$$
$(2+n^4)^beta sim_infty n^{4beta}.$
Therefore,
$$bigl(sqrt[3]{n+1} - sqrt[3]{n}bigr)^alpha (2+n^4)^betasim_infty dfrac1{3^alpha,n^{tfrac{2alpha}3-4beta}}$$
and the latter, which is a $p$-series, converges if and only if $;dfrac{2alpha}3-4beta>1$.
$endgroup$
add a comment |
$begingroup$
It's much simpler using equivalents
$sqrt[3]{n+1}-sqrt[3]{n}=sqrt[3]{n}Bigl(sqrt[3]{1+dfrac 1n}-1Bigr)=sqrt[3]{n}dfrac1{3n}=dfrac1{3n^{tfrac23}}$, so
$$bigl(sqrt[3]{n+1} - sqrt[3]{n}bigr)^alphasim_{infty}dfrac1{3^alpha,n^{tfrac{2alpha}3}}.$$
$(2+n^4)^beta sim_infty n^{4beta}.$
Therefore,
$$bigl(sqrt[3]{n+1} - sqrt[3]{n}bigr)^alpha (2+n^4)^betasim_infty dfrac1{3^alpha,n^{tfrac{2alpha}3-4beta}}$$
and the latter, which is a $p$-series, converges if and only if $;dfrac{2alpha}3-4beta>1$.
$endgroup$
It's much simpler using equivalents
$sqrt[3]{n+1}-sqrt[3]{n}=sqrt[3]{n}Bigl(sqrt[3]{1+dfrac 1n}-1Bigr)=sqrt[3]{n}dfrac1{3n}=dfrac1{3n^{tfrac23}}$, so
$$bigl(sqrt[3]{n+1} - sqrt[3]{n}bigr)^alphasim_{infty}dfrac1{3^alpha,n^{tfrac{2alpha}3}}.$$
$(2+n^4)^beta sim_infty n^{4beta}.$
Therefore,
$$bigl(sqrt[3]{n+1} - sqrt[3]{n}bigr)^alpha (2+n^4)^betasim_infty dfrac1{3^alpha,n^{tfrac{2alpha}3-4beta}}$$
and the latter, which is a $p$-series, converges if and only if $;dfrac{2alpha}3-4beta>1$.
answered Dec 24 '18 at 21:26
BernardBernard
125k743119
125k743119
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051599%2fsum-n-0-infty-sqrt3n1-sqrt3n-alpha-2n4-beta-convergen%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
@Clayton $a=sqrt[3]{n+1}$ and $b=sqrt[3]{n}$
$endgroup$
– Andarrkor
Dec 24 '18 at 20:57