On the integral $int_1^inftybig({x}^n-frac1{n+1}big)frac{dx}x$
up vote
4
down vote
favorite
According to Dirichlet's test (integral version),
$$
I_n=int_1^inftybig({x}^n-frac1{n+1}big)frac{dx}x
$$
converges, where $n$ is a positive integer and ${x}$ denotes the fractional part of $x$. Using series, I found out the values of $I_1$ and $I_2$. $I_1=frac12ln(2pi)-1$ and $I_2=frac12ln(2pi)-frac12-2ln A$, where $A$ denotes Glaisher's constant.
My Attempt to Generalize $I_n$
$$I_n=sum_{m=1}^inftyint_0^1big(t^n-frac1{n+1}big)frac{dt}{t+m}\
=sum_{m=1}^infty P_n(m)-frac1{n+1}lnbig(1+frac1mbig)+m^n(-1)^nlnbig(1+frac1mbig)\
=sum_{m=1}^infty-frac1{n+1}lnbig(1+frac1mbig)+frac1{(n+1)m}-frac1{(n+2)m^2}+cdots\
=fracgamma{n+1}+sum_{k=2}^inftyfrac{(-1)^{k-1}zeta(k)}{n+k}$$where $P_n$ is a polynomial with $deg P_n=n-1$ and $gamma$ denotes Euler's constant.
My questions are:
(i) Is my answer right?
(ii) If my answer is right, can I make it a little bit more
simplified?
(iii) How to find the value of $I_3$?
Edit: the convergence test of $I_n$
Denote $F(x)=int_1^x{t}^n-frac1{n+1}dt$, we have
$$F(x+1)-F(x)=int_x^{x+1}{t}^ndt-frac1{n+1}=0.$$
Obviously, $F(x)$ is bounded in $[0,1]$. So $F(x)$ is bounded in $mathbb{R}$. Also, $1/x$ is a decreasing function in $[1,+infty)$ and $lim_{xtoinfty}1/x=0$ Hence $I_n$ converges.
calculus definite-integrals summation riemann-zeta
add a comment |
up vote
4
down vote
favorite
According to Dirichlet's test (integral version),
$$
I_n=int_1^inftybig({x}^n-frac1{n+1}big)frac{dx}x
$$
converges, where $n$ is a positive integer and ${x}$ denotes the fractional part of $x$. Using series, I found out the values of $I_1$ and $I_2$. $I_1=frac12ln(2pi)-1$ and $I_2=frac12ln(2pi)-frac12-2ln A$, where $A$ denotes Glaisher's constant.
My Attempt to Generalize $I_n$
$$I_n=sum_{m=1}^inftyint_0^1big(t^n-frac1{n+1}big)frac{dt}{t+m}\
=sum_{m=1}^infty P_n(m)-frac1{n+1}lnbig(1+frac1mbig)+m^n(-1)^nlnbig(1+frac1mbig)\
=sum_{m=1}^infty-frac1{n+1}lnbig(1+frac1mbig)+frac1{(n+1)m}-frac1{(n+2)m^2}+cdots\
=fracgamma{n+1}+sum_{k=2}^inftyfrac{(-1)^{k-1}zeta(k)}{n+k}$$where $P_n$ is a polynomial with $deg P_n=n-1$ and $gamma$ denotes Euler's constant.
My questions are:
(i) Is my answer right?
(ii) If my answer is right, can I make it a little bit more
simplified?
(iii) How to find the value of $I_3$?
Edit: the convergence test of $I_n$
Denote $F(x)=int_1^x{t}^n-frac1{n+1}dt$, we have
$$F(x+1)-F(x)=int_x^{x+1}{t}^ndt-frac1{n+1}=0.$$
Obviously, $F(x)$ is bounded in $[0,1]$. So $F(x)$ is bounded in $mathbb{R}$. Also, $1/x$ is a decreasing function in $[1,+infty)$ and $lim_{xtoinfty}1/x=0$ Hence $I_n$ converges.
calculus definite-integrals summation riemann-zeta
Can you please explain - in detail - how you deduced the convergence of $I_n$ from Dirichlet's test?
– uniquesolution
Jul 12 at 11:23
@uniquesolution Edited. Please check.
– Kemono Chen
Jul 12 at 11:56
$$I_3=frac{3zeta(3)}{4pi^2} + frac12 ln(2pi) - 3ln A-frac13$$ $$I_4 = frac{3zeta(3)}{2 pi^2} - frac{3 zeta'(4)}{pi^4} +frac{8}{15} ln(2 pi) - 4ln A+frac{gamma}{30}-frac14$$
– nospoon
Jul 12 at 20:22
add a comment |
up vote
4
down vote
favorite
up vote
4
down vote
favorite
According to Dirichlet's test (integral version),
$$
I_n=int_1^inftybig({x}^n-frac1{n+1}big)frac{dx}x
$$
converges, where $n$ is a positive integer and ${x}$ denotes the fractional part of $x$. Using series, I found out the values of $I_1$ and $I_2$. $I_1=frac12ln(2pi)-1$ and $I_2=frac12ln(2pi)-frac12-2ln A$, where $A$ denotes Glaisher's constant.
My Attempt to Generalize $I_n$
$$I_n=sum_{m=1}^inftyint_0^1big(t^n-frac1{n+1}big)frac{dt}{t+m}\
=sum_{m=1}^infty P_n(m)-frac1{n+1}lnbig(1+frac1mbig)+m^n(-1)^nlnbig(1+frac1mbig)\
=sum_{m=1}^infty-frac1{n+1}lnbig(1+frac1mbig)+frac1{(n+1)m}-frac1{(n+2)m^2}+cdots\
=fracgamma{n+1}+sum_{k=2}^inftyfrac{(-1)^{k-1}zeta(k)}{n+k}$$where $P_n$ is a polynomial with $deg P_n=n-1$ and $gamma$ denotes Euler's constant.
My questions are:
(i) Is my answer right?
(ii) If my answer is right, can I make it a little bit more
simplified?
(iii) How to find the value of $I_3$?
Edit: the convergence test of $I_n$
Denote $F(x)=int_1^x{t}^n-frac1{n+1}dt$, we have
$$F(x+1)-F(x)=int_x^{x+1}{t}^ndt-frac1{n+1}=0.$$
Obviously, $F(x)$ is bounded in $[0,1]$. So $F(x)$ is bounded in $mathbb{R}$. Also, $1/x$ is a decreasing function in $[1,+infty)$ and $lim_{xtoinfty}1/x=0$ Hence $I_n$ converges.
calculus definite-integrals summation riemann-zeta
According to Dirichlet's test (integral version),
$$
I_n=int_1^inftybig({x}^n-frac1{n+1}big)frac{dx}x
$$
converges, where $n$ is a positive integer and ${x}$ denotes the fractional part of $x$. Using series, I found out the values of $I_1$ and $I_2$. $I_1=frac12ln(2pi)-1$ and $I_2=frac12ln(2pi)-frac12-2ln A$, where $A$ denotes Glaisher's constant.
My Attempt to Generalize $I_n$
$$I_n=sum_{m=1}^inftyint_0^1big(t^n-frac1{n+1}big)frac{dt}{t+m}\
=sum_{m=1}^infty P_n(m)-frac1{n+1}lnbig(1+frac1mbig)+m^n(-1)^nlnbig(1+frac1mbig)\
=sum_{m=1}^infty-frac1{n+1}lnbig(1+frac1mbig)+frac1{(n+1)m}-frac1{(n+2)m^2}+cdots\
=fracgamma{n+1}+sum_{k=2}^inftyfrac{(-1)^{k-1}zeta(k)}{n+k}$$where $P_n$ is a polynomial with $deg P_n=n-1$ and $gamma$ denotes Euler's constant.
My questions are:
(i) Is my answer right?
(ii) If my answer is right, can I make it a little bit more
simplified?
(iii) How to find the value of $I_3$?
Edit: the convergence test of $I_n$
Denote $F(x)=int_1^x{t}^n-frac1{n+1}dt$, we have
$$F(x+1)-F(x)=int_x^{x+1}{t}^ndt-frac1{n+1}=0.$$
Obviously, $F(x)$ is bounded in $[0,1]$. So $F(x)$ is bounded in $mathbb{R}$. Also, $1/x$ is a decreasing function in $[1,+infty)$ and $lim_{xtoinfty}1/x=0$ Hence $I_n$ converges.
calculus definite-integrals summation riemann-zeta
calculus definite-integrals summation riemann-zeta
edited Nov 14 at 14:34
Flermat
1,24511129
1,24511129
asked Jul 12 at 11:01
Kemono Chen
1,599330
1,599330
Can you please explain - in detail - how you deduced the convergence of $I_n$ from Dirichlet's test?
– uniquesolution
Jul 12 at 11:23
@uniquesolution Edited. Please check.
– Kemono Chen
Jul 12 at 11:56
$$I_3=frac{3zeta(3)}{4pi^2} + frac12 ln(2pi) - 3ln A-frac13$$ $$I_4 = frac{3zeta(3)}{2 pi^2} - frac{3 zeta'(4)}{pi^4} +frac{8}{15} ln(2 pi) - 4ln A+frac{gamma}{30}-frac14$$
– nospoon
Jul 12 at 20:22
add a comment |
Can you please explain - in detail - how you deduced the convergence of $I_n$ from Dirichlet's test?
– uniquesolution
Jul 12 at 11:23
@uniquesolution Edited. Please check.
– Kemono Chen
Jul 12 at 11:56
$$I_3=frac{3zeta(3)}{4pi^2} + frac12 ln(2pi) - 3ln A-frac13$$ $$I_4 = frac{3zeta(3)}{2 pi^2} - frac{3 zeta'(4)}{pi^4} +frac{8}{15} ln(2 pi) - 4ln A+frac{gamma}{30}-frac14$$
– nospoon
Jul 12 at 20:22
Can you please explain - in detail - how you deduced the convergence of $I_n$ from Dirichlet's test?
– uniquesolution
Jul 12 at 11:23
Can you please explain - in detail - how you deduced the convergence of $I_n$ from Dirichlet's test?
– uniquesolution
Jul 12 at 11:23
@uniquesolution Edited. Please check.
– Kemono Chen
Jul 12 at 11:56
@uniquesolution Edited. Please check.
– Kemono Chen
Jul 12 at 11:56
$$I_3=frac{3zeta(3)}{4pi^2} + frac12 ln(2pi) - 3ln A-frac13$$ $$I_4 = frac{3zeta(3)}{2 pi^2} - frac{3 zeta'(4)}{pi^4} +frac{8}{15} ln(2 pi) - 4ln A+frac{gamma}{30}-frac14$$
– nospoon
Jul 12 at 20:22
$$I_3=frac{3zeta(3)}{4pi^2} + frac12 ln(2pi) - 3ln A-frac13$$ $$I_4 = frac{3zeta(3)}{2 pi^2} - frac{3 zeta'(4)}{pi^4} +frac{8}{15} ln(2 pi) - 4ln A+frac{gamma}{30}-frac14$$
– nospoon
Jul 12 at 20:22
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2848545%2fon-the-integral-int-1-infty-big-x-n-frac1n1-big-fracdxx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Can you please explain - in detail - how you deduced the convergence of $I_n$ from Dirichlet's test?
– uniquesolution
Jul 12 at 11:23
@uniquesolution Edited. Please check.
– Kemono Chen
Jul 12 at 11:56
$$I_3=frac{3zeta(3)}{4pi^2} + frac12 ln(2pi) - 3ln A-frac13$$ $$I_4 = frac{3zeta(3)}{2 pi^2} - frac{3 zeta'(4)}{pi^4} +frac{8}{15} ln(2 pi) - 4ln A+frac{gamma}{30}-frac14$$
– nospoon
Jul 12 at 20:22