On the integral $int_1^inftybig({x}^n-frac1{n+1}big)frac{dx}x$











up vote
4
down vote

favorite
1












According to Dirichlet's test (integral version),



$$
I_n=int_1^inftybig({x}^n-frac1{n+1}big)frac{dx}x
$$

converges, where $n$ is a positive integer and ${x}$ denotes the fractional part of $x$. Using series, I found out the values of $I_1$ and $I_2$. $I_1=frac12ln(2pi)-1$ and $I_2=frac12ln(2pi)-frac12-2ln A$, where $A$ denotes Glaisher's constant.



My Attempt to Generalize $I_n$



$$I_n=sum_{m=1}^inftyint_0^1big(t^n-frac1{n+1}big)frac{dt}{t+m}\
=sum_{m=1}^infty P_n(m)-frac1{n+1}lnbig(1+frac1mbig)+m^n(-1)^nlnbig(1+frac1mbig)\
=sum_{m=1}^infty-frac1{n+1}lnbig(1+frac1mbig)+frac1{(n+1)m}-frac1{(n+2)m^2}+cdots\
=fracgamma{n+1}+sum_{k=2}^inftyfrac{(-1)^{k-1}zeta(k)}{n+k}$$
where $P_n$ is a polynomial with $deg P_n=n-1$ and $gamma$ denotes Euler's constant.



My questions are:




(i) Is my answer right?



(ii) If my answer is right, can I make it a little bit more
simplified?



(iii) How to find the value of $I_3$?




Edit: the convergence test of $I_n$

Denote $F(x)=int_1^x{t}^n-frac1{n+1}dt$, we have
$$F(x+1)-F(x)=int_x^{x+1}{t}^ndt-frac1{n+1}=0.$$
Obviously, $F(x)$ is bounded in $[0,1]$. So $F(x)$ is bounded in $mathbb{R}$. Also, $1/x$ is a decreasing function in $[1,+infty)$ and $lim_{xtoinfty}1/x=0$ Hence $I_n$ converges.










share|cite|improve this question
























  • Can you please explain - in detail - how you deduced the convergence of $I_n$ from Dirichlet's test?
    – uniquesolution
    Jul 12 at 11:23










  • @uniquesolution Edited. Please check.
    – Kemono Chen
    Jul 12 at 11:56










  • $$I_3=frac{3zeta(3)}{4pi^2} + frac12 ln(2pi) - 3ln A-frac13$$ $$I_4 = frac{3zeta(3)}{2 pi^2} - frac{3 zeta'(4)}{pi^4} +frac{8}{15} ln(2 pi) - 4ln A+frac{gamma}{30}-frac14$$
    – nospoon
    Jul 12 at 20:22

















up vote
4
down vote

favorite
1












According to Dirichlet's test (integral version),



$$
I_n=int_1^inftybig({x}^n-frac1{n+1}big)frac{dx}x
$$

converges, where $n$ is a positive integer and ${x}$ denotes the fractional part of $x$. Using series, I found out the values of $I_1$ and $I_2$. $I_1=frac12ln(2pi)-1$ and $I_2=frac12ln(2pi)-frac12-2ln A$, where $A$ denotes Glaisher's constant.



My Attempt to Generalize $I_n$



$$I_n=sum_{m=1}^inftyint_0^1big(t^n-frac1{n+1}big)frac{dt}{t+m}\
=sum_{m=1}^infty P_n(m)-frac1{n+1}lnbig(1+frac1mbig)+m^n(-1)^nlnbig(1+frac1mbig)\
=sum_{m=1}^infty-frac1{n+1}lnbig(1+frac1mbig)+frac1{(n+1)m}-frac1{(n+2)m^2}+cdots\
=fracgamma{n+1}+sum_{k=2}^inftyfrac{(-1)^{k-1}zeta(k)}{n+k}$$
where $P_n$ is a polynomial with $deg P_n=n-1$ and $gamma$ denotes Euler's constant.



My questions are:




(i) Is my answer right?



(ii) If my answer is right, can I make it a little bit more
simplified?



(iii) How to find the value of $I_3$?




Edit: the convergence test of $I_n$

Denote $F(x)=int_1^x{t}^n-frac1{n+1}dt$, we have
$$F(x+1)-F(x)=int_x^{x+1}{t}^ndt-frac1{n+1}=0.$$
Obviously, $F(x)$ is bounded in $[0,1]$. So $F(x)$ is bounded in $mathbb{R}$. Also, $1/x$ is a decreasing function in $[1,+infty)$ and $lim_{xtoinfty}1/x=0$ Hence $I_n$ converges.










share|cite|improve this question
























  • Can you please explain - in detail - how you deduced the convergence of $I_n$ from Dirichlet's test?
    – uniquesolution
    Jul 12 at 11:23










  • @uniquesolution Edited. Please check.
    – Kemono Chen
    Jul 12 at 11:56










  • $$I_3=frac{3zeta(3)}{4pi^2} + frac12 ln(2pi) - 3ln A-frac13$$ $$I_4 = frac{3zeta(3)}{2 pi^2} - frac{3 zeta'(4)}{pi^4} +frac{8}{15} ln(2 pi) - 4ln A+frac{gamma}{30}-frac14$$
    – nospoon
    Jul 12 at 20:22















up vote
4
down vote

favorite
1









up vote
4
down vote

favorite
1






1





According to Dirichlet's test (integral version),



$$
I_n=int_1^inftybig({x}^n-frac1{n+1}big)frac{dx}x
$$

converges, where $n$ is a positive integer and ${x}$ denotes the fractional part of $x$. Using series, I found out the values of $I_1$ and $I_2$. $I_1=frac12ln(2pi)-1$ and $I_2=frac12ln(2pi)-frac12-2ln A$, where $A$ denotes Glaisher's constant.



My Attempt to Generalize $I_n$



$$I_n=sum_{m=1}^inftyint_0^1big(t^n-frac1{n+1}big)frac{dt}{t+m}\
=sum_{m=1}^infty P_n(m)-frac1{n+1}lnbig(1+frac1mbig)+m^n(-1)^nlnbig(1+frac1mbig)\
=sum_{m=1}^infty-frac1{n+1}lnbig(1+frac1mbig)+frac1{(n+1)m}-frac1{(n+2)m^2}+cdots\
=fracgamma{n+1}+sum_{k=2}^inftyfrac{(-1)^{k-1}zeta(k)}{n+k}$$
where $P_n$ is a polynomial with $deg P_n=n-1$ and $gamma$ denotes Euler's constant.



My questions are:




(i) Is my answer right?



(ii) If my answer is right, can I make it a little bit more
simplified?



(iii) How to find the value of $I_3$?




Edit: the convergence test of $I_n$

Denote $F(x)=int_1^x{t}^n-frac1{n+1}dt$, we have
$$F(x+1)-F(x)=int_x^{x+1}{t}^ndt-frac1{n+1}=0.$$
Obviously, $F(x)$ is bounded in $[0,1]$. So $F(x)$ is bounded in $mathbb{R}$. Also, $1/x$ is a decreasing function in $[1,+infty)$ and $lim_{xtoinfty}1/x=0$ Hence $I_n$ converges.










share|cite|improve this question















According to Dirichlet's test (integral version),



$$
I_n=int_1^inftybig({x}^n-frac1{n+1}big)frac{dx}x
$$

converges, where $n$ is a positive integer and ${x}$ denotes the fractional part of $x$. Using series, I found out the values of $I_1$ and $I_2$. $I_1=frac12ln(2pi)-1$ and $I_2=frac12ln(2pi)-frac12-2ln A$, where $A$ denotes Glaisher's constant.



My Attempt to Generalize $I_n$



$$I_n=sum_{m=1}^inftyint_0^1big(t^n-frac1{n+1}big)frac{dt}{t+m}\
=sum_{m=1}^infty P_n(m)-frac1{n+1}lnbig(1+frac1mbig)+m^n(-1)^nlnbig(1+frac1mbig)\
=sum_{m=1}^infty-frac1{n+1}lnbig(1+frac1mbig)+frac1{(n+1)m}-frac1{(n+2)m^2}+cdots\
=fracgamma{n+1}+sum_{k=2}^inftyfrac{(-1)^{k-1}zeta(k)}{n+k}$$
where $P_n$ is a polynomial with $deg P_n=n-1$ and $gamma$ denotes Euler's constant.



My questions are:




(i) Is my answer right?



(ii) If my answer is right, can I make it a little bit more
simplified?



(iii) How to find the value of $I_3$?




Edit: the convergence test of $I_n$

Denote $F(x)=int_1^x{t}^n-frac1{n+1}dt$, we have
$$F(x+1)-F(x)=int_x^{x+1}{t}^ndt-frac1{n+1}=0.$$
Obviously, $F(x)$ is bounded in $[0,1]$. So $F(x)$ is bounded in $mathbb{R}$. Also, $1/x$ is a decreasing function in $[1,+infty)$ and $lim_{xtoinfty}1/x=0$ Hence $I_n$ converges.







calculus definite-integrals summation riemann-zeta






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 14 at 14:34









Flermat

1,24511129




1,24511129










asked Jul 12 at 11:01









Kemono Chen

1,599330




1,599330












  • Can you please explain - in detail - how you deduced the convergence of $I_n$ from Dirichlet's test?
    – uniquesolution
    Jul 12 at 11:23










  • @uniquesolution Edited. Please check.
    – Kemono Chen
    Jul 12 at 11:56










  • $$I_3=frac{3zeta(3)}{4pi^2} + frac12 ln(2pi) - 3ln A-frac13$$ $$I_4 = frac{3zeta(3)}{2 pi^2} - frac{3 zeta'(4)}{pi^4} +frac{8}{15} ln(2 pi) - 4ln A+frac{gamma}{30}-frac14$$
    – nospoon
    Jul 12 at 20:22




















  • Can you please explain - in detail - how you deduced the convergence of $I_n$ from Dirichlet's test?
    – uniquesolution
    Jul 12 at 11:23










  • @uniquesolution Edited. Please check.
    – Kemono Chen
    Jul 12 at 11:56










  • $$I_3=frac{3zeta(3)}{4pi^2} + frac12 ln(2pi) - 3ln A-frac13$$ $$I_4 = frac{3zeta(3)}{2 pi^2} - frac{3 zeta'(4)}{pi^4} +frac{8}{15} ln(2 pi) - 4ln A+frac{gamma}{30}-frac14$$
    – nospoon
    Jul 12 at 20:22


















Can you please explain - in detail - how you deduced the convergence of $I_n$ from Dirichlet's test?
– uniquesolution
Jul 12 at 11:23




Can you please explain - in detail - how you deduced the convergence of $I_n$ from Dirichlet's test?
– uniquesolution
Jul 12 at 11:23












@uniquesolution Edited. Please check.
– Kemono Chen
Jul 12 at 11:56




@uniquesolution Edited. Please check.
– Kemono Chen
Jul 12 at 11:56












$$I_3=frac{3zeta(3)}{4pi^2} + frac12 ln(2pi) - 3ln A-frac13$$ $$I_4 = frac{3zeta(3)}{2 pi^2} - frac{3 zeta'(4)}{pi^4} +frac{8}{15} ln(2 pi) - 4ln A+frac{gamma}{30}-frac14$$
– nospoon
Jul 12 at 20:22






$$I_3=frac{3zeta(3)}{4pi^2} + frac12 ln(2pi) - 3ln A-frac13$$ $$I_4 = frac{3zeta(3)}{2 pi^2} - frac{3 zeta'(4)}{pi^4} +frac{8}{15} ln(2 pi) - 4ln A+frac{gamma}{30}-frac14$$
– nospoon
Jul 12 at 20:22

















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2848545%2fon-the-integral-int-1-infty-big-x-n-frac1n1-big-fracdxx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2848545%2fon-the-integral-int-1-infty-big-x-n-frac1n1-big-fracdxx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Musa