Spherical Laplacians on an Exponential











up vote
2
down vote

favorite












I looked around a bit and couldn't find a resolution to this.



I was curious about the scalar function $u(r) = e^{-r}$ with $r in [0,infty)$ and acting Spherical Laplacians on it.



$$Delta u(r) = frac{1}{r^{2}}frac{partial}{partial r}Big(r^{2}frac{partial u}{partial r}Big).tag{1}$$



Laplacian is straight forward to compute:



$$Delta u = Big(1 - frac{2}{r}Big)u.tag{2}$$



But computing a second one seems to introduce some ambiguity:



$$Delta^{2}u = Delta Delta u = Delta Big(1-frac{2}{r}Big)u = DeltaBig(u -frac{2u}{r}Big) = Big(1-frac{2}{r}Big)u - DeltaBig(frac{2u}{r}Big) .tag{3}$$



With the rightmost term being the confusing part to me; If I proceed with distributing the $Delta$:



$$DeltaBig(frac{u}{r}Big) overset{?}{=} u DeltaBig(frac{1}{r}Big) +2 nabla u cdot nablaBig(frac{1}{r}Big) + frac{1}{r}Delta u.tag{4}$$



As I understand it all of these objects are defined, with: $$nablaBig(frac{1}{r}Big) = -frac{1}{r^{2}}hat{r}qquad text{and}qquadDeltaBig(frac{1}{r}Big) = -4pidelta^3(r).tag{5}$$



Where $delta^3(r)$ is the 3D Dirac delta distribution.



This all seems to suggest that:



$$-2DeltaBig(frac{u}{r}Big) = -2Big(-4pidelta^3(r) u + 2frac{u}{r^{2}} + frac{1}{r}Big(1 - frac{2}{r}Big)u Big)tag{6}$$



$$require{cancel}-2DeltaBig(frac{u}{r}Big) = -2Big(-4pidelta(r) u + cancel{2frac{u}{r^{2}}} + frac{1}{r}Big(1 - cancel{frac{2}{r}}Big)u Big)tag{7}$$



$$-2DeltaBig(frac{u}{r}Big) = 8pidelta^3(r)u - frac{2u}{r}.tag{8}$$



Leaving me with:



$$Delta^{2}u = Big(1 -frac{4}{r} + 8pidelta^3(r)Big)u.tag{9}$$



Now the heart of my question is:




  1. Are these manipulations correct, or have I assumed something I should have not?


  2. Why does $DeltaBig(Delta e^{-r}Big)$ contain a discontinuity (the $delta^3(r)$) when all the $r$-derivatives exist?











share|cite|improve this question




















  • 1




    It might be better to use the less ambiguous notation $Delta (1/r) = -4 pi delta(mathbf x)$. $delta(r)$ is in fact the zero functional (because the volume element contains $r^2$). Then your result is indeed correct, $$Delta (Delta u) = left( 1 - frac 4 r right) u + 8 pi delta(mathbf x).$$ Roughly speaking, the derivation works because differentiating $1/r$ once still gives an integrable singularity.
    – Maxim
    Nov 14 at 2:31










  • Ah, I see now. Thanks so much
    – Nebu
    Nov 14 at 2:35















up vote
2
down vote

favorite












I looked around a bit and couldn't find a resolution to this.



I was curious about the scalar function $u(r) = e^{-r}$ with $r in [0,infty)$ and acting Spherical Laplacians on it.



$$Delta u(r) = frac{1}{r^{2}}frac{partial}{partial r}Big(r^{2}frac{partial u}{partial r}Big).tag{1}$$



Laplacian is straight forward to compute:



$$Delta u = Big(1 - frac{2}{r}Big)u.tag{2}$$



But computing a second one seems to introduce some ambiguity:



$$Delta^{2}u = Delta Delta u = Delta Big(1-frac{2}{r}Big)u = DeltaBig(u -frac{2u}{r}Big) = Big(1-frac{2}{r}Big)u - DeltaBig(frac{2u}{r}Big) .tag{3}$$



With the rightmost term being the confusing part to me; If I proceed with distributing the $Delta$:



$$DeltaBig(frac{u}{r}Big) overset{?}{=} u DeltaBig(frac{1}{r}Big) +2 nabla u cdot nablaBig(frac{1}{r}Big) + frac{1}{r}Delta u.tag{4}$$



As I understand it all of these objects are defined, with: $$nablaBig(frac{1}{r}Big) = -frac{1}{r^{2}}hat{r}qquad text{and}qquadDeltaBig(frac{1}{r}Big) = -4pidelta^3(r).tag{5}$$



Where $delta^3(r)$ is the 3D Dirac delta distribution.



This all seems to suggest that:



$$-2DeltaBig(frac{u}{r}Big) = -2Big(-4pidelta^3(r) u + 2frac{u}{r^{2}} + frac{1}{r}Big(1 - frac{2}{r}Big)u Big)tag{6}$$



$$require{cancel}-2DeltaBig(frac{u}{r}Big) = -2Big(-4pidelta(r) u + cancel{2frac{u}{r^{2}}} + frac{1}{r}Big(1 - cancel{frac{2}{r}}Big)u Big)tag{7}$$



$$-2DeltaBig(frac{u}{r}Big) = 8pidelta^3(r)u - frac{2u}{r}.tag{8}$$



Leaving me with:



$$Delta^{2}u = Big(1 -frac{4}{r} + 8pidelta^3(r)Big)u.tag{9}$$



Now the heart of my question is:




  1. Are these manipulations correct, or have I assumed something I should have not?


  2. Why does $DeltaBig(Delta e^{-r}Big)$ contain a discontinuity (the $delta^3(r)$) when all the $r$-derivatives exist?











share|cite|improve this question




















  • 1




    It might be better to use the less ambiguous notation $Delta (1/r) = -4 pi delta(mathbf x)$. $delta(r)$ is in fact the zero functional (because the volume element contains $r^2$). Then your result is indeed correct, $$Delta (Delta u) = left( 1 - frac 4 r right) u + 8 pi delta(mathbf x).$$ Roughly speaking, the derivation works because differentiating $1/r$ once still gives an integrable singularity.
    – Maxim
    Nov 14 at 2:31










  • Ah, I see now. Thanks so much
    – Nebu
    Nov 14 at 2:35













up vote
2
down vote

favorite









up vote
2
down vote

favorite











I looked around a bit and couldn't find a resolution to this.



I was curious about the scalar function $u(r) = e^{-r}$ with $r in [0,infty)$ and acting Spherical Laplacians on it.



$$Delta u(r) = frac{1}{r^{2}}frac{partial}{partial r}Big(r^{2}frac{partial u}{partial r}Big).tag{1}$$



Laplacian is straight forward to compute:



$$Delta u = Big(1 - frac{2}{r}Big)u.tag{2}$$



But computing a second one seems to introduce some ambiguity:



$$Delta^{2}u = Delta Delta u = Delta Big(1-frac{2}{r}Big)u = DeltaBig(u -frac{2u}{r}Big) = Big(1-frac{2}{r}Big)u - DeltaBig(frac{2u}{r}Big) .tag{3}$$



With the rightmost term being the confusing part to me; If I proceed with distributing the $Delta$:



$$DeltaBig(frac{u}{r}Big) overset{?}{=} u DeltaBig(frac{1}{r}Big) +2 nabla u cdot nablaBig(frac{1}{r}Big) + frac{1}{r}Delta u.tag{4}$$



As I understand it all of these objects are defined, with: $$nablaBig(frac{1}{r}Big) = -frac{1}{r^{2}}hat{r}qquad text{and}qquadDeltaBig(frac{1}{r}Big) = -4pidelta^3(r).tag{5}$$



Where $delta^3(r)$ is the 3D Dirac delta distribution.



This all seems to suggest that:



$$-2DeltaBig(frac{u}{r}Big) = -2Big(-4pidelta^3(r) u + 2frac{u}{r^{2}} + frac{1}{r}Big(1 - frac{2}{r}Big)u Big)tag{6}$$



$$require{cancel}-2DeltaBig(frac{u}{r}Big) = -2Big(-4pidelta(r) u + cancel{2frac{u}{r^{2}}} + frac{1}{r}Big(1 - cancel{frac{2}{r}}Big)u Big)tag{7}$$



$$-2DeltaBig(frac{u}{r}Big) = 8pidelta^3(r)u - frac{2u}{r}.tag{8}$$



Leaving me with:



$$Delta^{2}u = Big(1 -frac{4}{r} + 8pidelta^3(r)Big)u.tag{9}$$



Now the heart of my question is:




  1. Are these manipulations correct, or have I assumed something I should have not?


  2. Why does $DeltaBig(Delta e^{-r}Big)$ contain a discontinuity (the $delta^3(r)$) when all the $r$-derivatives exist?











share|cite|improve this question















I looked around a bit and couldn't find a resolution to this.



I was curious about the scalar function $u(r) = e^{-r}$ with $r in [0,infty)$ and acting Spherical Laplacians on it.



$$Delta u(r) = frac{1}{r^{2}}frac{partial}{partial r}Big(r^{2}frac{partial u}{partial r}Big).tag{1}$$



Laplacian is straight forward to compute:



$$Delta u = Big(1 - frac{2}{r}Big)u.tag{2}$$



But computing a second one seems to introduce some ambiguity:



$$Delta^{2}u = Delta Delta u = Delta Big(1-frac{2}{r}Big)u = DeltaBig(u -frac{2u}{r}Big) = Big(1-frac{2}{r}Big)u - DeltaBig(frac{2u}{r}Big) .tag{3}$$



With the rightmost term being the confusing part to me; If I proceed with distributing the $Delta$:



$$DeltaBig(frac{u}{r}Big) overset{?}{=} u DeltaBig(frac{1}{r}Big) +2 nabla u cdot nablaBig(frac{1}{r}Big) + frac{1}{r}Delta u.tag{4}$$



As I understand it all of these objects are defined, with: $$nablaBig(frac{1}{r}Big) = -frac{1}{r^{2}}hat{r}qquad text{and}qquadDeltaBig(frac{1}{r}Big) = -4pidelta^3(r).tag{5}$$



Where $delta^3(r)$ is the 3D Dirac delta distribution.



This all seems to suggest that:



$$-2DeltaBig(frac{u}{r}Big) = -2Big(-4pidelta^3(r) u + 2frac{u}{r^{2}} + frac{1}{r}Big(1 - frac{2}{r}Big)u Big)tag{6}$$



$$require{cancel}-2DeltaBig(frac{u}{r}Big) = -2Big(-4pidelta(r) u + cancel{2frac{u}{r^{2}}} + frac{1}{r}Big(1 - cancel{frac{2}{r}}Big)u Big)tag{7}$$



$$-2DeltaBig(frac{u}{r}Big) = 8pidelta^3(r)u - frac{2u}{r}.tag{8}$$



Leaving me with:



$$Delta^{2}u = Big(1 -frac{4}{r} + 8pidelta^3(r)Big)u.tag{9}$$



Now the heart of my question is:




  1. Are these manipulations correct, or have I assumed something I should have not?


  2. Why does $DeltaBig(Delta e^{-r}Big)$ contain a discontinuity (the $delta^3(r)$) when all the $r$-derivatives exist?








multivariable-calculus vector-analysis distribution-theory dirac-delta






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 14 at 14:27









Qmechanic

4,71811751




4,71811751










asked Nov 13 at 1:07









Nebu

585




585








  • 1




    It might be better to use the less ambiguous notation $Delta (1/r) = -4 pi delta(mathbf x)$. $delta(r)$ is in fact the zero functional (because the volume element contains $r^2$). Then your result is indeed correct, $$Delta (Delta u) = left( 1 - frac 4 r right) u + 8 pi delta(mathbf x).$$ Roughly speaking, the derivation works because differentiating $1/r$ once still gives an integrable singularity.
    – Maxim
    Nov 14 at 2:31










  • Ah, I see now. Thanks so much
    – Nebu
    Nov 14 at 2:35














  • 1




    It might be better to use the less ambiguous notation $Delta (1/r) = -4 pi delta(mathbf x)$. $delta(r)$ is in fact the zero functional (because the volume element contains $r^2$). Then your result is indeed correct, $$Delta (Delta u) = left( 1 - frac 4 r right) u + 8 pi delta(mathbf x).$$ Roughly speaking, the derivation works because differentiating $1/r$ once still gives an integrable singularity.
    – Maxim
    Nov 14 at 2:31










  • Ah, I see now. Thanks so much
    – Nebu
    Nov 14 at 2:35








1




1




It might be better to use the less ambiguous notation $Delta (1/r) = -4 pi delta(mathbf x)$. $delta(r)$ is in fact the zero functional (because the volume element contains $r^2$). Then your result is indeed correct, $$Delta (Delta u) = left( 1 - frac 4 r right) u + 8 pi delta(mathbf x).$$ Roughly speaking, the derivation works because differentiating $1/r$ once still gives an integrable singularity.
– Maxim
Nov 14 at 2:31




It might be better to use the less ambiguous notation $Delta (1/r) = -4 pi delta(mathbf x)$. $delta(r)$ is in fact the zero functional (because the volume element contains $r^2$). Then your result is indeed correct, $$Delta (Delta u) = left( 1 - frac 4 r right) u + 8 pi delta(mathbf x).$$ Roughly speaking, the derivation works because differentiating $1/r$ once still gives an integrable singularity.
– Maxim
Nov 14 at 2:31












Ah, I see now. Thanks so much
– Nebu
Nov 14 at 2:35




Ah, I see now. Thanks so much
– Nebu
Nov 14 at 2:35










1 Answer
1






active

oldest

votes

















up vote
2
down vote



accepted











  1. No, OP's manipulations are a priori ill-defined since OP's function $u:mathbb{R}^3to mathbb{R}$ given by $$ u({bf r})~:=~exp(-|{bf r}|), qquad {bf r}~in~mathbb{R}^3, tag{A}$$
    is not differentiable in the origin ${bf r}={bf 0}$.


  2. Let us define distributions
    $$delta^3[f]~:=~ f[{bf 0}], qquad 1[f]~:=~int_{mathbb{R}^3} !d^3 {bf r} ~f({bf r}), $$ $$ r^{-1}[f]~:=~int_{mathbb{R}^3} !d^3 {bf r} frac{f({bf r})}{|{bf r}|}, qquad r^{-2}[f]~:=~int_{mathbb{R}^3} !d^3 {bf r} frac{f({bf r})}{|{bf r}|^2}, tag{B}$$ for test functions $fin C^{infty}_c(mathbb{R}^3)$.


  3. In practice, it may be simpler to regularize OP's function
    $$u({bf r})~=~ lim_{varepsilonto 0^+}u_{varepsilon}({bf r}) tag{C}$$
    to a $C^{infty}$-function
    $$u_{varepsilon}({bf r})~:=~exp(-sqrt{|{bf r}|^2+varepsilon}), qquad {bf r}~in~mathbb{R}^3,qquad varepsilon ~>~0.tag{D}$$
    One may then show the formulas
    $$lim_{varepsilonto 0^+}u_{varepsilon}^{-1} Delta u_{varepsilon}~=~1-2r^{-1}, qquad lim_{varepsilonto 0^+}u_{varepsilon}^{-1} Delta^2 u_{varepsilon}~=~1-4r^{-1}+8pidelta^3,tag{E} $$
    in the sense of generalized functions/distributions, which are similar to
    OP's formulas (2) & (9).







share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














     

    draft saved


    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996142%2fspherical-laplacians-on-an-exponential%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    2
    down vote



    accepted











    1. No, OP's manipulations are a priori ill-defined since OP's function $u:mathbb{R}^3to mathbb{R}$ given by $$ u({bf r})~:=~exp(-|{bf r}|), qquad {bf r}~in~mathbb{R}^3, tag{A}$$
      is not differentiable in the origin ${bf r}={bf 0}$.


    2. Let us define distributions
      $$delta^3[f]~:=~ f[{bf 0}], qquad 1[f]~:=~int_{mathbb{R}^3} !d^3 {bf r} ~f({bf r}), $$ $$ r^{-1}[f]~:=~int_{mathbb{R}^3} !d^3 {bf r} frac{f({bf r})}{|{bf r}|}, qquad r^{-2}[f]~:=~int_{mathbb{R}^3} !d^3 {bf r} frac{f({bf r})}{|{bf r}|^2}, tag{B}$$ for test functions $fin C^{infty}_c(mathbb{R}^3)$.


    3. In practice, it may be simpler to regularize OP's function
      $$u({bf r})~=~ lim_{varepsilonto 0^+}u_{varepsilon}({bf r}) tag{C}$$
      to a $C^{infty}$-function
      $$u_{varepsilon}({bf r})~:=~exp(-sqrt{|{bf r}|^2+varepsilon}), qquad {bf r}~in~mathbb{R}^3,qquad varepsilon ~>~0.tag{D}$$
      One may then show the formulas
      $$lim_{varepsilonto 0^+}u_{varepsilon}^{-1} Delta u_{varepsilon}~=~1-2r^{-1}, qquad lim_{varepsilonto 0^+}u_{varepsilon}^{-1} Delta^2 u_{varepsilon}~=~1-4r^{-1}+8pidelta^3,tag{E} $$
      in the sense of generalized functions/distributions, which are similar to
      OP's formulas (2) & (9).







    share|cite|improve this answer



























      up vote
      2
      down vote



      accepted











      1. No, OP's manipulations are a priori ill-defined since OP's function $u:mathbb{R}^3to mathbb{R}$ given by $$ u({bf r})~:=~exp(-|{bf r}|), qquad {bf r}~in~mathbb{R}^3, tag{A}$$
        is not differentiable in the origin ${bf r}={bf 0}$.


      2. Let us define distributions
        $$delta^3[f]~:=~ f[{bf 0}], qquad 1[f]~:=~int_{mathbb{R}^3} !d^3 {bf r} ~f({bf r}), $$ $$ r^{-1}[f]~:=~int_{mathbb{R}^3} !d^3 {bf r} frac{f({bf r})}{|{bf r}|}, qquad r^{-2}[f]~:=~int_{mathbb{R}^3} !d^3 {bf r} frac{f({bf r})}{|{bf r}|^2}, tag{B}$$ for test functions $fin C^{infty}_c(mathbb{R}^3)$.


      3. In practice, it may be simpler to regularize OP's function
        $$u({bf r})~=~ lim_{varepsilonto 0^+}u_{varepsilon}({bf r}) tag{C}$$
        to a $C^{infty}$-function
        $$u_{varepsilon}({bf r})~:=~exp(-sqrt{|{bf r}|^2+varepsilon}), qquad {bf r}~in~mathbb{R}^3,qquad varepsilon ~>~0.tag{D}$$
        One may then show the formulas
        $$lim_{varepsilonto 0^+}u_{varepsilon}^{-1} Delta u_{varepsilon}~=~1-2r^{-1}, qquad lim_{varepsilonto 0^+}u_{varepsilon}^{-1} Delta^2 u_{varepsilon}~=~1-4r^{-1}+8pidelta^3,tag{E} $$
        in the sense of generalized functions/distributions, which are similar to
        OP's formulas (2) & (9).







      share|cite|improve this answer

























        up vote
        2
        down vote



        accepted







        up vote
        2
        down vote



        accepted







        1. No, OP's manipulations are a priori ill-defined since OP's function $u:mathbb{R}^3to mathbb{R}$ given by $$ u({bf r})~:=~exp(-|{bf r}|), qquad {bf r}~in~mathbb{R}^3, tag{A}$$
          is not differentiable in the origin ${bf r}={bf 0}$.


        2. Let us define distributions
          $$delta^3[f]~:=~ f[{bf 0}], qquad 1[f]~:=~int_{mathbb{R}^3} !d^3 {bf r} ~f({bf r}), $$ $$ r^{-1}[f]~:=~int_{mathbb{R}^3} !d^3 {bf r} frac{f({bf r})}{|{bf r}|}, qquad r^{-2}[f]~:=~int_{mathbb{R}^3} !d^3 {bf r} frac{f({bf r})}{|{bf r}|^2}, tag{B}$$ for test functions $fin C^{infty}_c(mathbb{R}^3)$.


        3. In practice, it may be simpler to regularize OP's function
          $$u({bf r})~=~ lim_{varepsilonto 0^+}u_{varepsilon}({bf r}) tag{C}$$
          to a $C^{infty}$-function
          $$u_{varepsilon}({bf r})~:=~exp(-sqrt{|{bf r}|^2+varepsilon}), qquad {bf r}~in~mathbb{R}^3,qquad varepsilon ~>~0.tag{D}$$
          One may then show the formulas
          $$lim_{varepsilonto 0^+}u_{varepsilon}^{-1} Delta u_{varepsilon}~=~1-2r^{-1}, qquad lim_{varepsilonto 0^+}u_{varepsilon}^{-1} Delta^2 u_{varepsilon}~=~1-4r^{-1}+8pidelta^3,tag{E} $$
          in the sense of generalized functions/distributions, which are similar to
          OP's formulas (2) & (9).







        share|cite|improve this answer















        1. No, OP's manipulations are a priori ill-defined since OP's function $u:mathbb{R}^3to mathbb{R}$ given by $$ u({bf r})~:=~exp(-|{bf r}|), qquad {bf r}~in~mathbb{R}^3, tag{A}$$
          is not differentiable in the origin ${bf r}={bf 0}$.


        2. Let us define distributions
          $$delta^3[f]~:=~ f[{bf 0}], qquad 1[f]~:=~int_{mathbb{R}^3} !d^3 {bf r} ~f({bf r}), $$ $$ r^{-1}[f]~:=~int_{mathbb{R}^3} !d^3 {bf r} frac{f({bf r})}{|{bf r}|}, qquad r^{-2}[f]~:=~int_{mathbb{R}^3} !d^3 {bf r} frac{f({bf r})}{|{bf r}|^2}, tag{B}$$ for test functions $fin C^{infty}_c(mathbb{R}^3)$.


        3. In practice, it may be simpler to regularize OP's function
          $$u({bf r})~=~ lim_{varepsilonto 0^+}u_{varepsilon}({bf r}) tag{C}$$
          to a $C^{infty}$-function
          $$u_{varepsilon}({bf r})~:=~exp(-sqrt{|{bf r}|^2+varepsilon}), qquad {bf r}~in~mathbb{R}^3,qquad varepsilon ~>~0.tag{D}$$
          One may then show the formulas
          $$lim_{varepsilonto 0^+}u_{varepsilon}^{-1} Delta u_{varepsilon}~=~1-2r^{-1}, qquad lim_{varepsilonto 0^+}u_{varepsilon}^{-1} Delta^2 u_{varepsilon}~=~1-4r^{-1}+8pidelta^3,tag{E} $$
          in the sense of generalized functions/distributions, which are similar to
          OP's formulas (2) & (9).








        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Nov 14 at 14:28

























        answered Nov 13 at 15:47









        Qmechanic

        4,71811751




        4,71811751






























             

            draft saved


            draft discarded



















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996142%2fspherical-laplacians-on-an-exponential%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            In PowerPoint, is there a keyboard shortcut for bulleted / numbered list?

            How to put 3 figures in Latex with 2 figures side by side and 1 below these side by side images but in...