We have to show that $f_n(x)=x^ne^{-nx}$.
up vote
0
down vote
favorite
So, we have to show that $f_n(x)=x^ne^{-nx}$ converges uniformly on $[0,infty)$ ?
Consider pointwise, in case $xin[0,infty),f_nto0,(x^n<e^{nx})$.
Let $epsilon>0,$ choose $N=frac{ln(epsilon)}{lnx -x},$ if $nle N$ then $|f_n(x)-f(x)|=|frac{x^n}{e^{nx}}-0|<epsilon$.
My problem, when i choose $N=frac{ln(epsilon)}{lnx -x}$ if $x=0,N$ dose not exists ?
real-analysis
add a comment |
up vote
0
down vote
favorite
So, we have to show that $f_n(x)=x^ne^{-nx}$ converges uniformly on $[0,infty)$ ?
Consider pointwise, in case $xin[0,infty),f_nto0,(x^n<e^{nx})$.
Let $epsilon>0,$ choose $N=frac{ln(epsilon)}{lnx -x},$ if $nle N$ then $|f_n(x)-f(x)|=|frac{x^n}{e^{nx}}-0|<epsilon$.
My problem, when i choose $N=frac{ln(epsilon)}{lnx -x}$ if $x=0,N$ dose not exists ?
real-analysis
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
So, we have to show that $f_n(x)=x^ne^{-nx}$ converges uniformly on $[0,infty)$ ?
Consider pointwise, in case $xin[0,infty),f_nto0,(x^n<e^{nx})$.
Let $epsilon>0,$ choose $N=frac{ln(epsilon)}{lnx -x},$ if $nle N$ then $|f_n(x)-f(x)|=|frac{x^n}{e^{nx}}-0|<epsilon$.
My problem, when i choose $N=frac{ln(epsilon)}{lnx -x}$ if $x=0,N$ dose not exists ?
real-analysis
So, we have to show that $f_n(x)=x^ne^{-nx}$ converges uniformly on $[0,infty)$ ?
Consider pointwise, in case $xin[0,infty),f_nto0,(x^n<e^{nx})$.
Let $epsilon>0,$ choose $N=frac{ln(epsilon)}{lnx -x},$ if $nle N$ then $|f_n(x)-f(x)|=|frac{x^n}{e^{nx}}-0|<epsilon$.
My problem, when i choose $N=frac{ln(epsilon)}{lnx -x}$ if $x=0,N$ dose not exists ?
real-analysis
real-analysis
asked Nov 14 at 13:20
kim wenasa
1
1
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
Note that $f_n'(x)=nx^{n-1}e^{-nx}-nx^ne^{-nx}=nx^{n-1}(1-x)e^{-nx}$. So, $f_n(x)$ is increasing in $[0,1)$ and decreasing in $(1,infty)$. Therefore, $max f_n=f_n(1)=e^{-n}$. Since $lim_{ntoinfty}e^{-n}=0$, $(f_n)_{ninmathbb N}$ converges uniformly to the null function.
Can i ask some question this $f_n(x)=x^n$ is converges uniformly on $(-1,1)$?, i think it true, check $f_nto 0 $ on $(-1,1)$ @José Carlos Santos.
– kim wenasa
Nov 14 at 14:10
That's another question. I suggest that you post it as such.
– José Carlos Santos
Nov 14 at 14:13
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
Note that $f_n'(x)=nx^{n-1}e^{-nx}-nx^ne^{-nx}=nx^{n-1}(1-x)e^{-nx}$. So, $f_n(x)$ is increasing in $[0,1)$ and decreasing in $(1,infty)$. Therefore, $max f_n=f_n(1)=e^{-n}$. Since $lim_{ntoinfty}e^{-n}=0$, $(f_n)_{ninmathbb N}$ converges uniformly to the null function.
Can i ask some question this $f_n(x)=x^n$ is converges uniformly on $(-1,1)$?, i think it true, check $f_nto 0 $ on $(-1,1)$ @José Carlos Santos.
– kim wenasa
Nov 14 at 14:10
That's another question. I suggest that you post it as such.
– José Carlos Santos
Nov 14 at 14:13
add a comment |
up vote
1
down vote
Note that $f_n'(x)=nx^{n-1}e^{-nx}-nx^ne^{-nx}=nx^{n-1}(1-x)e^{-nx}$. So, $f_n(x)$ is increasing in $[0,1)$ and decreasing in $(1,infty)$. Therefore, $max f_n=f_n(1)=e^{-n}$. Since $lim_{ntoinfty}e^{-n}=0$, $(f_n)_{ninmathbb N}$ converges uniformly to the null function.
Can i ask some question this $f_n(x)=x^n$ is converges uniformly on $(-1,1)$?, i think it true, check $f_nto 0 $ on $(-1,1)$ @José Carlos Santos.
– kim wenasa
Nov 14 at 14:10
That's another question. I suggest that you post it as such.
– José Carlos Santos
Nov 14 at 14:13
add a comment |
up vote
1
down vote
up vote
1
down vote
Note that $f_n'(x)=nx^{n-1}e^{-nx}-nx^ne^{-nx}=nx^{n-1}(1-x)e^{-nx}$. So, $f_n(x)$ is increasing in $[0,1)$ and decreasing in $(1,infty)$. Therefore, $max f_n=f_n(1)=e^{-n}$. Since $lim_{ntoinfty}e^{-n}=0$, $(f_n)_{ninmathbb N}$ converges uniformly to the null function.
Note that $f_n'(x)=nx^{n-1}e^{-nx}-nx^ne^{-nx}=nx^{n-1}(1-x)e^{-nx}$. So, $f_n(x)$ is increasing in $[0,1)$ and decreasing in $(1,infty)$. Therefore, $max f_n=f_n(1)=e^{-n}$. Since $lim_{ntoinfty}e^{-n}=0$, $(f_n)_{ninmathbb N}$ converges uniformly to the null function.
answered Nov 14 at 13:28
José Carlos Santos
140k18111203
140k18111203
Can i ask some question this $f_n(x)=x^n$ is converges uniformly on $(-1,1)$?, i think it true, check $f_nto 0 $ on $(-1,1)$ @José Carlos Santos.
– kim wenasa
Nov 14 at 14:10
That's another question. I suggest that you post it as such.
– José Carlos Santos
Nov 14 at 14:13
add a comment |
Can i ask some question this $f_n(x)=x^n$ is converges uniformly on $(-1,1)$?, i think it true, check $f_nto 0 $ on $(-1,1)$ @José Carlos Santos.
– kim wenasa
Nov 14 at 14:10
That's another question. I suggest that you post it as such.
– José Carlos Santos
Nov 14 at 14:13
Can i ask some question this $f_n(x)=x^n$ is converges uniformly on $(-1,1)$?, i think it true, check $f_nto 0 $ on $(-1,1)$ @José Carlos Santos.
– kim wenasa
Nov 14 at 14:10
Can i ask some question this $f_n(x)=x^n$ is converges uniformly on $(-1,1)$?, i think it true, check $f_nto 0 $ on $(-1,1)$ @José Carlos Santos.
– kim wenasa
Nov 14 at 14:10
That's another question. I suggest that you post it as such.
– José Carlos Santos
Nov 14 at 14:13
That's another question. I suggest that you post it as such.
– José Carlos Santos
Nov 14 at 14:13
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2998261%2fwe-have-to-show-that-f-nx-xne-nx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown