We have to show that $f_n(x)=x^ne^{-nx}$.











up vote
0
down vote

favorite












So, we have to show that $f_n(x)=x^ne^{-nx}$ converges uniformly on $[0,infty)$ ?



Consider pointwise, in case $xin[0,infty),f_nto0,(x^n<e^{nx})$.



Let $epsilon>0,$ choose $N=frac{ln(epsilon)}{lnx -x},$ if $nle N$ then $|f_n(x)-f(x)|=|frac{x^n}{e^{nx}}-0|<epsilon$.



My problem, when i choose $N=frac{ln(epsilon)}{lnx -x}$ if $x=0,N$ dose not exists ?










share|cite|improve this question


























    up vote
    0
    down vote

    favorite












    So, we have to show that $f_n(x)=x^ne^{-nx}$ converges uniformly on $[0,infty)$ ?



    Consider pointwise, in case $xin[0,infty),f_nto0,(x^n<e^{nx})$.



    Let $epsilon>0,$ choose $N=frac{ln(epsilon)}{lnx -x},$ if $nle N$ then $|f_n(x)-f(x)|=|frac{x^n}{e^{nx}}-0|<epsilon$.



    My problem, when i choose $N=frac{ln(epsilon)}{lnx -x}$ if $x=0,N$ dose not exists ?










    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      So, we have to show that $f_n(x)=x^ne^{-nx}$ converges uniformly on $[0,infty)$ ?



      Consider pointwise, in case $xin[0,infty),f_nto0,(x^n<e^{nx})$.



      Let $epsilon>0,$ choose $N=frac{ln(epsilon)}{lnx -x},$ if $nle N$ then $|f_n(x)-f(x)|=|frac{x^n}{e^{nx}}-0|<epsilon$.



      My problem, when i choose $N=frac{ln(epsilon)}{lnx -x}$ if $x=0,N$ dose not exists ?










      share|cite|improve this question













      So, we have to show that $f_n(x)=x^ne^{-nx}$ converges uniformly on $[0,infty)$ ?



      Consider pointwise, in case $xin[0,infty),f_nto0,(x^n<e^{nx})$.



      Let $epsilon>0,$ choose $N=frac{ln(epsilon)}{lnx -x},$ if $nle N$ then $|f_n(x)-f(x)|=|frac{x^n}{e^{nx}}-0|<epsilon$.



      My problem, when i choose $N=frac{ln(epsilon)}{lnx -x}$ if $x=0,N$ dose not exists ?







      real-analysis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 14 at 13:20









      kim wenasa

      1




      1






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote













          Note that $f_n'(x)=nx^{n-1}e^{-nx}-nx^ne^{-nx}=nx^{n-1}(1-x)e^{-nx}$. So, $f_n(x)$ is increasing in $[0,1)$ and decreasing in $(1,infty)$. Therefore, $max f_n=f_n(1)=e^{-n}$. Since $lim_{ntoinfty}e^{-n}=0$, $(f_n)_{ninmathbb N}$ converges uniformly to the null function.






          share|cite|improve this answer





















          • Can i ask some question this $f_n(x)=x^n$ is converges uniformly on $(-1,1)$?, i think it true, check $f_nto 0 $ on $(-1,1)$ @José Carlos Santos.
            – kim wenasa
            Nov 14 at 14:10












          • That's another question. I suggest that you post it as such.
            – José Carlos Santos
            Nov 14 at 14:13











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2998261%2fwe-have-to-show-that-f-nx-xne-nx%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote













          Note that $f_n'(x)=nx^{n-1}e^{-nx}-nx^ne^{-nx}=nx^{n-1}(1-x)e^{-nx}$. So, $f_n(x)$ is increasing in $[0,1)$ and decreasing in $(1,infty)$. Therefore, $max f_n=f_n(1)=e^{-n}$. Since $lim_{ntoinfty}e^{-n}=0$, $(f_n)_{ninmathbb N}$ converges uniformly to the null function.






          share|cite|improve this answer





















          • Can i ask some question this $f_n(x)=x^n$ is converges uniformly on $(-1,1)$?, i think it true, check $f_nto 0 $ on $(-1,1)$ @José Carlos Santos.
            – kim wenasa
            Nov 14 at 14:10












          • That's another question. I suggest that you post it as such.
            – José Carlos Santos
            Nov 14 at 14:13















          up vote
          1
          down vote













          Note that $f_n'(x)=nx^{n-1}e^{-nx}-nx^ne^{-nx}=nx^{n-1}(1-x)e^{-nx}$. So, $f_n(x)$ is increasing in $[0,1)$ and decreasing in $(1,infty)$. Therefore, $max f_n=f_n(1)=e^{-n}$. Since $lim_{ntoinfty}e^{-n}=0$, $(f_n)_{ninmathbb N}$ converges uniformly to the null function.






          share|cite|improve this answer





















          • Can i ask some question this $f_n(x)=x^n$ is converges uniformly on $(-1,1)$?, i think it true, check $f_nto 0 $ on $(-1,1)$ @José Carlos Santos.
            – kim wenasa
            Nov 14 at 14:10












          • That's another question. I suggest that you post it as such.
            – José Carlos Santos
            Nov 14 at 14:13













          up vote
          1
          down vote










          up vote
          1
          down vote









          Note that $f_n'(x)=nx^{n-1}e^{-nx}-nx^ne^{-nx}=nx^{n-1}(1-x)e^{-nx}$. So, $f_n(x)$ is increasing in $[0,1)$ and decreasing in $(1,infty)$. Therefore, $max f_n=f_n(1)=e^{-n}$. Since $lim_{ntoinfty}e^{-n}=0$, $(f_n)_{ninmathbb N}$ converges uniformly to the null function.






          share|cite|improve this answer












          Note that $f_n'(x)=nx^{n-1}e^{-nx}-nx^ne^{-nx}=nx^{n-1}(1-x)e^{-nx}$. So, $f_n(x)$ is increasing in $[0,1)$ and decreasing in $(1,infty)$. Therefore, $max f_n=f_n(1)=e^{-n}$. Since $lim_{ntoinfty}e^{-n}=0$, $(f_n)_{ninmathbb N}$ converges uniformly to the null function.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Nov 14 at 13:28









          José Carlos Santos

          140k18111203




          140k18111203












          • Can i ask some question this $f_n(x)=x^n$ is converges uniformly on $(-1,1)$?, i think it true, check $f_nto 0 $ on $(-1,1)$ @José Carlos Santos.
            – kim wenasa
            Nov 14 at 14:10












          • That's another question. I suggest that you post it as such.
            – José Carlos Santos
            Nov 14 at 14:13


















          • Can i ask some question this $f_n(x)=x^n$ is converges uniformly on $(-1,1)$?, i think it true, check $f_nto 0 $ on $(-1,1)$ @José Carlos Santos.
            – kim wenasa
            Nov 14 at 14:10












          • That's another question. I suggest that you post it as such.
            – José Carlos Santos
            Nov 14 at 14:13
















          Can i ask some question this $f_n(x)=x^n$ is converges uniformly on $(-1,1)$?, i think it true, check $f_nto 0 $ on $(-1,1)$ @José Carlos Santos.
          – kim wenasa
          Nov 14 at 14:10






          Can i ask some question this $f_n(x)=x^n$ is converges uniformly on $(-1,1)$?, i think it true, check $f_nto 0 $ on $(-1,1)$ @José Carlos Santos.
          – kim wenasa
          Nov 14 at 14:10














          That's another question. I suggest that you post it as such.
          – José Carlos Santos
          Nov 14 at 14:13




          That's another question. I suggest that you post it as such.
          – José Carlos Santos
          Nov 14 at 14:13


















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2998261%2fwe-have-to-show-that-f-nx-xne-nx%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Plaza Victoria

          In PowerPoint, is there a keyboard shortcut for bulleted / numbered list?

          How to put 3 figures in Latex with 2 figures side by side and 1 below these side by side images but in...