Probability that only one of the two husbands and only one of the two wives is retired.
up vote
1
down vote
favorite
The members of a wine tasting club are married couples. For any married couples in the club, the probability that "husband is retired " $= 0.7$ , "wife is retired" $= 0.4$ , the probability that "the husband retires given his wife retires" $=0.8$ .
Two married couples are chosen at random. Find the probability that only one of the two husbands and only one of the two wives is retired.
My work:
$P$ (Both of them are retired) = $0.32 $
$P$ (Only the husband is retired) = $0.38 $
$P$ (Only the wife is retired) = $0.08 $
$P$ (Only one of them is retired) = $0.46 $
So
$P$ (Only one of two husbands and only one of the two wives is retired) = $$2 times 0.38 times 0.08 = 0.0608$$
But the answer says $0.2016$ . Why is it so? I tried $P$ (Only one of them retired)$^2$ but this equals $0.2116$ and does not make sense since it also accounts for having both husbands retired or wives retired from two couples -- not one each.
Many thanks in advance!
probability statistics
add a comment |
up vote
1
down vote
favorite
The members of a wine tasting club are married couples. For any married couples in the club, the probability that "husband is retired " $= 0.7$ , "wife is retired" $= 0.4$ , the probability that "the husband retires given his wife retires" $=0.8$ .
Two married couples are chosen at random. Find the probability that only one of the two husbands and only one of the two wives is retired.
My work:
$P$ (Both of them are retired) = $0.32 $
$P$ (Only the husband is retired) = $0.38 $
$P$ (Only the wife is retired) = $0.08 $
$P$ (Only one of them is retired) = $0.46 $
So
$P$ (Only one of two husbands and only one of the two wives is retired) = $$2 times 0.38 times 0.08 = 0.0608$$
But the answer says $0.2016$ . Why is it so? I tried $P$ (Only one of them retired)$^2$ but this equals $0.2116$ and does not make sense since it also accounts for having both husbands retired or wives retired from two couples -- not one each.
Many thanks in advance!
probability statistics
2
What does "the probability that the husband retire is 0.8." mean? You already said the probability the husband is retired is 0.7. Presumably we are expected to assume there is no correlation between husband retired and wife retired. Is that true?
– Ross Millikan
Aug 10 '16 at 2:53
5
Your title says "probability one of each from two couples is retired" whereas your body says "probability that only one of the two husbands and only one of the two wives is retired." These are different questions. If Mr. X is retired while Ms. X is not and Mr. Y is retired while Ms. Y is not it will satisfy the first question but not the second. On the otherhand, if Mr. X and Ms. X are both retired while Mr. Y and Ms. Y are both not retired, it will satisfy the second question and not the first. At a quick glance it is not clear which of these you want answered, recommend changing title.
– JMoravitz
Aug 10 '16 at 3:01
My deepest aplogies. I was writing this in hurry on my phone before the lecture started and made several mistakes, exactly as many of you kind people suggested. I was going to delete this post but you smart people already figured out my mistake and gave the correct answer. Please accept my sincere apology. This will not happen again
– zcahfg2
Aug 10 '16 at 4:35
I will make sure to edit any remaining errors when the lecture ends.
– zcahfg2
Aug 10 '16 at 4:37
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
The members of a wine tasting club are married couples. For any married couples in the club, the probability that "husband is retired " $= 0.7$ , "wife is retired" $= 0.4$ , the probability that "the husband retires given his wife retires" $=0.8$ .
Two married couples are chosen at random. Find the probability that only one of the two husbands and only one of the two wives is retired.
My work:
$P$ (Both of them are retired) = $0.32 $
$P$ (Only the husband is retired) = $0.38 $
$P$ (Only the wife is retired) = $0.08 $
$P$ (Only one of them is retired) = $0.46 $
So
$P$ (Only one of two husbands and only one of the two wives is retired) = $$2 times 0.38 times 0.08 = 0.0608$$
But the answer says $0.2016$ . Why is it so? I tried $P$ (Only one of them retired)$^2$ but this equals $0.2116$ and does not make sense since it also accounts for having both husbands retired or wives retired from two couples -- not one each.
Many thanks in advance!
probability statistics
The members of a wine tasting club are married couples. For any married couples in the club, the probability that "husband is retired " $= 0.7$ , "wife is retired" $= 0.4$ , the probability that "the husband retires given his wife retires" $=0.8$ .
Two married couples are chosen at random. Find the probability that only one of the two husbands and only one of the two wives is retired.
My work:
$P$ (Both of them are retired) = $0.32 $
$P$ (Only the husband is retired) = $0.38 $
$P$ (Only the wife is retired) = $0.08 $
$P$ (Only one of them is retired) = $0.46 $
So
$P$ (Only one of two husbands and only one of the two wives is retired) = $$2 times 0.38 times 0.08 = 0.0608$$
But the answer says $0.2016$ . Why is it so? I tried $P$ (Only one of them retired)$^2$ but this equals $0.2116$ and does not make sense since it also accounts for having both husbands retired or wives retired from two couples -- not one each.
Many thanks in advance!
probability statistics
probability statistics
edited Nov 14 at 11:01
YukiJ
2,0552828
2,0552828
asked Aug 10 '16 at 2:32
zcahfg2
380212
380212
2
What does "the probability that the husband retire is 0.8." mean? You already said the probability the husband is retired is 0.7. Presumably we are expected to assume there is no correlation between husband retired and wife retired. Is that true?
– Ross Millikan
Aug 10 '16 at 2:53
5
Your title says "probability one of each from two couples is retired" whereas your body says "probability that only one of the two husbands and only one of the two wives is retired." These are different questions. If Mr. X is retired while Ms. X is not and Mr. Y is retired while Ms. Y is not it will satisfy the first question but not the second. On the otherhand, if Mr. X and Ms. X are both retired while Mr. Y and Ms. Y are both not retired, it will satisfy the second question and not the first. At a quick glance it is not clear which of these you want answered, recommend changing title.
– JMoravitz
Aug 10 '16 at 3:01
My deepest aplogies. I was writing this in hurry on my phone before the lecture started and made several mistakes, exactly as many of you kind people suggested. I was going to delete this post but you smart people already figured out my mistake and gave the correct answer. Please accept my sincere apology. This will not happen again
– zcahfg2
Aug 10 '16 at 4:35
I will make sure to edit any remaining errors when the lecture ends.
– zcahfg2
Aug 10 '16 at 4:37
add a comment |
2
What does "the probability that the husband retire is 0.8." mean? You already said the probability the husband is retired is 0.7. Presumably we are expected to assume there is no correlation between husband retired and wife retired. Is that true?
– Ross Millikan
Aug 10 '16 at 2:53
5
Your title says "probability one of each from two couples is retired" whereas your body says "probability that only one of the two husbands and only one of the two wives is retired." These are different questions. If Mr. X is retired while Ms. X is not and Mr. Y is retired while Ms. Y is not it will satisfy the first question but not the second. On the otherhand, if Mr. X and Ms. X are both retired while Mr. Y and Ms. Y are both not retired, it will satisfy the second question and not the first. At a quick glance it is not clear which of these you want answered, recommend changing title.
– JMoravitz
Aug 10 '16 at 3:01
My deepest aplogies. I was writing this in hurry on my phone before the lecture started and made several mistakes, exactly as many of you kind people suggested. I was going to delete this post but you smart people already figured out my mistake and gave the correct answer. Please accept my sincere apology. This will not happen again
– zcahfg2
Aug 10 '16 at 4:35
I will make sure to edit any remaining errors when the lecture ends.
– zcahfg2
Aug 10 '16 at 4:37
2
2
What does "the probability that the husband retire is 0.8." mean? You already said the probability the husband is retired is 0.7. Presumably we are expected to assume there is no correlation between husband retired and wife retired. Is that true?
– Ross Millikan
Aug 10 '16 at 2:53
What does "the probability that the husband retire is 0.8." mean? You already said the probability the husband is retired is 0.7. Presumably we are expected to assume there is no correlation between husband retired and wife retired. Is that true?
– Ross Millikan
Aug 10 '16 at 2:53
5
5
Your title says "probability one of each from two couples is retired" whereas your body says "probability that only one of the two husbands and only one of the two wives is retired." These are different questions. If Mr. X is retired while Ms. X is not and Mr. Y is retired while Ms. Y is not it will satisfy the first question but not the second. On the otherhand, if Mr. X and Ms. X are both retired while Mr. Y and Ms. Y are both not retired, it will satisfy the second question and not the first. At a quick glance it is not clear which of these you want answered, recommend changing title.
– JMoravitz
Aug 10 '16 at 3:01
Your title says "probability one of each from two couples is retired" whereas your body says "probability that only one of the two husbands and only one of the two wives is retired." These are different questions. If Mr. X is retired while Ms. X is not and Mr. Y is retired while Ms. Y is not it will satisfy the first question but not the second. On the otherhand, if Mr. X and Ms. X are both retired while Mr. Y and Ms. Y are both not retired, it will satisfy the second question and not the first. At a quick glance it is not clear which of these you want answered, recommend changing title.
– JMoravitz
Aug 10 '16 at 3:01
My deepest aplogies. I was writing this in hurry on my phone before the lecture started and made several mistakes, exactly as many of you kind people suggested. I was going to delete this post but you smart people already figured out my mistake and gave the correct answer. Please accept my sincere apology. This will not happen again
– zcahfg2
Aug 10 '16 at 4:35
My deepest aplogies. I was writing this in hurry on my phone before the lecture started and made several mistakes, exactly as many of you kind people suggested. I was going to delete this post but you smart people already figured out my mistake and gave the correct answer. Please accept my sincere apology. This will not happen again
– zcahfg2
Aug 10 '16 at 4:35
I will make sure to edit any remaining errors when the lecture ends.
– zcahfg2
Aug 10 '16 at 4:37
I will make sure to edit any remaining errors when the lecture ends.
– zcahfg2
Aug 10 '16 at 4:37
add a comment |
3 Answers
3
active
oldest
votes
up vote
4
down vote
accepted
The members of a wine tasting club are married couples. For any married couples in the club, the probability husband is retired = 0.7, wife retired = 0.4, the probability that the husband retire is 0.8.
This appears to be a miscopy. The second of those "probability that the husband retires" is apparently conditioned on when the wife is retired. Let $H_k$ be the event that husband of couple $k$ is retired, and $W_k$ that of the wife being so. Then $mathsf P(H_k)=0.7, mathsf P(W_k)=0.4, mathsf P(H_kmid W_k)=0.8$ which does mean (as you obtained):
$mathsf P(H_kcap W_k) ~=~ 0.4cdot 0.8 ~=~ 0.32
\ mathsf P(H_kcap W_k^complement) ~=~ 0.7-0.32 ~=~ 0.38
\ mathsf P(W_kcap H_k^complement) ~=~ 0.4-0.32 ~=~ 0.08
\ mathsf P(H_ktriangle W_k) ~=~ 0.38+0.08 ~=~ 0.46 $
This is okay. $color{green}checkmark$
We also have $mathsf P(H_1^complementcap W_k^complement)=1-(0.7+0.08)= 0.22$
Then you attempted: $ 2 mathsf P((H_1cap W_2^complement)cap(W_1cap H_2^complement)) = 2cdot 0.38cdot 0.08 = 0.0608$, making use of symmetry, and that is okay for the "probability for only one of each from each couple is retired." However that is not what you needed, so it is not okay. $require{cancel}color{red}{xcancelcdot}$
tl;dr
You were actually asked to find "the probability that only one of the two husbands and only one of the two wives is retired", which is $mathsf P((H_1triangle H_2)cap (W_1triangle W_2))$ This includes the event that both do come from the same couple.
$$begin{align} =~& 2mathsf P(H_1cap W_1)mathsf P(H_2^complementcap W_2^complement)+2mathsf P(H_1cap W_1^complement)mathsf P(H_2^complementcap W_2) \ =~& 2cdot 0.32cdot 0.22 + 0.0608 \ =~& 0.2016end{align}$$
What a fantastic answer, not only you immediately spotted my terrible mistake and gave the correct answer, your post is presented in a manner that I can tackle the problem again before checking your hidden solution. I had much fun learning from you. That triangle is really convenient too. Thanks a lot!
– zcahfg2
Aug 10 '16 at 6:38
@GrahamKemp What does $triangle$ mean? Never seen this. Found an answer here math.stackexchange.com/questions/1491702/…
– Antinous
Nov 14 at 10:12
1
Symmetric Set Difference. $Atriangle B = (Asmallsetminus B)cup(Bsmallsetminus A)$
– Graham Kemp
Nov 14 at 11:56
add a comment |
up vote
2
down vote
You seem to be using the probability the husband is retired is $0.8$ and assuming independence between the husband being retired and the wife being retired. As you write the question you might be expected to use $0.7$ for the probability the husband is retired. Under your reading, the probability that only the husband is retired is $0.8(1-0.4)=0.48$ so the probability of exactly one retired is $0.56$ Then in your final calculation where you ask the probability that exactly one husband and one wife is retired, you assume the retired people come from separate couples. It could be that both people of one couple are retired and neither of the other couple.
1
No, zcahfg2 is using $mathsf P(H)=0.7, mathsf P(W)=0.4, mathsf P(Hmid W)=0.8$
– Graham Kemp
Aug 10 '16 at 3:56
add a comment |
up vote
1
down vote
Given the correct question to find...
...the probability that only one of the two husbands and only one of the two wives is retired,
this is how I understood it.
Who are the couples in this scenario? Husband 1 and Wife 1 ($H_1W_1$) and Husband 2 and Wife 2 ($H_2W_2$). These couples may be thought of as choices in a decision tree, where we multiply probabilities "across" and sum "down".
Given the condition that only one husband and one wife can be retired, we have the following possibilities:
$$(H_1W_1)(H_2'W_2')implies P(Hcap W)P(H'cap W')$$
$$(H_1W_1')(H_2'W_2)implies P(Hcap W')P(H'cap W)$$
$$(H_1'W_1)(H_2W_2')implies P(H'cap W)P(Hcap W')$$
$$(H_1'W_1')(H_2W_2)implies P(H'cap W')P(Hcap W)$$
Hence we can sum "down" and collect terms to obtain
$$2P(Hcap W)P(H'cap W')+2P(Hcap W')P(H'cap W)=0.2016.$$
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
The members of a wine tasting club are married couples. For any married couples in the club, the probability husband is retired = 0.7, wife retired = 0.4, the probability that the husband retire is 0.8.
This appears to be a miscopy. The second of those "probability that the husband retires" is apparently conditioned on when the wife is retired. Let $H_k$ be the event that husband of couple $k$ is retired, and $W_k$ that of the wife being so. Then $mathsf P(H_k)=0.7, mathsf P(W_k)=0.4, mathsf P(H_kmid W_k)=0.8$ which does mean (as you obtained):
$mathsf P(H_kcap W_k) ~=~ 0.4cdot 0.8 ~=~ 0.32
\ mathsf P(H_kcap W_k^complement) ~=~ 0.7-0.32 ~=~ 0.38
\ mathsf P(W_kcap H_k^complement) ~=~ 0.4-0.32 ~=~ 0.08
\ mathsf P(H_ktriangle W_k) ~=~ 0.38+0.08 ~=~ 0.46 $
This is okay. $color{green}checkmark$
We also have $mathsf P(H_1^complementcap W_k^complement)=1-(0.7+0.08)= 0.22$
Then you attempted: $ 2 mathsf P((H_1cap W_2^complement)cap(W_1cap H_2^complement)) = 2cdot 0.38cdot 0.08 = 0.0608$, making use of symmetry, and that is okay for the "probability for only one of each from each couple is retired." However that is not what you needed, so it is not okay. $require{cancel}color{red}{xcancelcdot}$
tl;dr
You were actually asked to find "the probability that only one of the two husbands and only one of the two wives is retired", which is $mathsf P((H_1triangle H_2)cap (W_1triangle W_2))$ This includes the event that both do come from the same couple.
$$begin{align} =~& 2mathsf P(H_1cap W_1)mathsf P(H_2^complementcap W_2^complement)+2mathsf P(H_1cap W_1^complement)mathsf P(H_2^complementcap W_2) \ =~& 2cdot 0.32cdot 0.22 + 0.0608 \ =~& 0.2016end{align}$$
What a fantastic answer, not only you immediately spotted my terrible mistake and gave the correct answer, your post is presented in a manner that I can tackle the problem again before checking your hidden solution. I had much fun learning from you. That triangle is really convenient too. Thanks a lot!
– zcahfg2
Aug 10 '16 at 6:38
@GrahamKemp What does $triangle$ mean? Never seen this. Found an answer here math.stackexchange.com/questions/1491702/…
– Antinous
Nov 14 at 10:12
1
Symmetric Set Difference. $Atriangle B = (Asmallsetminus B)cup(Bsmallsetminus A)$
– Graham Kemp
Nov 14 at 11:56
add a comment |
up vote
4
down vote
accepted
The members of a wine tasting club are married couples. For any married couples in the club, the probability husband is retired = 0.7, wife retired = 0.4, the probability that the husband retire is 0.8.
This appears to be a miscopy. The second of those "probability that the husband retires" is apparently conditioned on when the wife is retired. Let $H_k$ be the event that husband of couple $k$ is retired, and $W_k$ that of the wife being so. Then $mathsf P(H_k)=0.7, mathsf P(W_k)=0.4, mathsf P(H_kmid W_k)=0.8$ which does mean (as you obtained):
$mathsf P(H_kcap W_k) ~=~ 0.4cdot 0.8 ~=~ 0.32
\ mathsf P(H_kcap W_k^complement) ~=~ 0.7-0.32 ~=~ 0.38
\ mathsf P(W_kcap H_k^complement) ~=~ 0.4-0.32 ~=~ 0.08
\ mathsf P(H_ktriangle W_k) ~=~ 0.38+0.08 ~=~ 0.46 $
This is okay. $color{green}checkmark$
We also have $mathsf P(H_1^complementcap W_k^complement)=1-(0.7+0.08)= 0.22$
Then you attempted: $ 2 mathsf P((H_1cap W_2^complement)cap(W_1cap H_2^complement)) = 2cdot 0.38cdot 0.08 = 0.0608$, making use of symmetry, and that is okay for the "probability for only one of each from each couple is retired." However that is not what you needed, so it is not okay. $require{cancel}color{red}{xcancelcdot}$
tl;dr
You were actually asked to find "the probability that only one of the two husbands and only one of the two wives is retired", which is $mathsf P((H_1triangle H_2)cap (W_1triangle W_2))$ This includes the event that both do come from the same couple.
$$begin{align} =~& 2mathsf P(H_1cap W_1)mathsf P(H_2^complementcap W_2^complement)+2mathsf P(H_1cap W_1^complement)mathsf P(H_2^complementcap W_2) \ =~& 2cdot 0.32cdot 0.22 + 0.0608 \ =~& 0.2016end{align}$$
What a fantastic answer, not only you immediately spotted my terrible mistake and gave the correct answer, your post is presented in a manner that I can tackle the problem again before checking your hidden solution. I had much fun learning from you. That triangle is really convenient too. Thanks a lot!
– zcahfg2
Aug 10 '16 at 6:38
@GrahamKemp What does $triangle$ mean? Never seen this. Found an answer here math.stackexchange.com/questions/1491702/…
– Antinous
Nov 14 at 10:12
1
Symmetric Set Difference. $Atriangle B = (Asmallsetminus B)cup(Bsmallsetminus A)$
– Graham Kemp
Nov 14 at 11:56
add a comment |
up vote
4
down vote
accepted
up vote
4
down vote
accepted
The members of a wine tasting club are married couples. For any married couples in the club, the probability husband is retired = 0.7, wife retired = 0.4, the probability that the husband retire is 0.8.
This appears to be a miscopy. The second of those "probability that the husband retires" is apparently conditioned on when the wife is retired. Let $H_k$ be the event that husband of couple $k$ is retired, and $W_k$ that of the wife being so. Then $mathsf P(H_k)=0.7, mathsf P(W_k)=0.4, mathsf P(H_kmid W_k)=0.8$ which does mean (as you obtained):
$mathsf P(H_kcap W_k) ~=~ 0.4cdot 0.8 ~=~ 0.32
\ mathsf P(H_kcap W_k^complement) ~=~ 0.7-0.32 ~=~ 0.38
\ mathsf P(W_kcap H_k^complement) ~=~ 0.4-0.32 ~=~ 0.08
\ mathsf P(H_ktriangle W_k) ~=~ 0.38+0.08 ~=~ 0.46 $
This is okay. $color{green}checkmark$
We also have $mathsf P(H_1^complementcap W_k^complement)=1-(0.7+0.08)= 0.22$
Then you attempted: $ 2 mathsf P((H_1cap W_2^complement)cap(W_1cap H_2^complement)) = 2cdot 0.38cdot 0.08 = 0.0608$, making use of symmetry, and that is okay for the "probability for only one of each from each couple is retired." However that is not what you needed, so it is not okay. $require{cancel}color{red}{xcancelcdot}$
tl;dr
You were actually asked to find "the probability that only one of the two husbands and only one of the two wives is retired", which is $mathsf P((H_1triangle H_2)cap (W_1triangle W_2))$ This includes the event that both do come from the same couple.
$$begin{align} =~& 2mathsf P(H_1cap W_1)mathsf P(H_2^complementcap W_2^complement)+2mathsf P(H_1cap W_1^complement)mathsf P(H_2^complementcap W_2) \ =~& 2cdot 0.32cdot 0.22 + 0.0608 \ =~& 0.2016end{align}$$
The members of a wine tasting club are married couples. For any married couples in the club, the probability husband is retired = 0.7, wife retired = 0.4, the probability that the husband retire is 0.8.
This appears to be a miscopy. The second of those "probability that the husband retires" is apparently conditioned on when the wife is retired. Let $H_k$ be the event that husband of couple $k$ is retired, and $W_k$ that of the wife being so. Then $mathsf P(H_k)=0.7, mathsf P(W_k)=0.4, mathsf P(H_kmid W_k)=0.8$ which does mean (as you obtained):
$mathsf P(H_kcap W_k) ~=~ 0.4cdot 0.8 ~=~ 0.32
\ mathsf P(H_kcap W_k^complement) ~=~ 0.7-0.32 ~=~ 0.38
\ mathsf P(W_kcap H_k^complement) ~=~ 0.4-0.32 ~=~ 0.08
\ mathsf P(H_ktriangle W_k) ~=~ 0.38+0.08 ~=~ 0.46 $
This is okay. $color{green}checkmark$
We also have $mathsf P(H_1^complementcap W_k^complement)=1-(0.7+0.08)= 0.22$
Then you attempted: $ 2 mathsf P((H_1cap W_2^complement)cap(W_1cap H_2^complement)) = 2cdot 0.38cdot 0.08 = 0.0608$, making use of symmetry, and that is okay for the "probability for only one of each from each couple is retired." However that is not what you needed, so it is not okay. $require{cancel}color{red}{xcancelcdot}$
tl;dr
You were actually asked to find "the probability that only one of the two husbands and only one of the two wives is retired", which is $mathsf P((H_1triangle H_2)cap (W_1triangle W_2))$ This includes the event that both do come from the same couple.
$$begin{align} =~& 2mathsf P(H_1cap W_1)mathsf P(H_2^complementcap W_2^complement)+2mathsf P(H_1cap W_1^complement)mathsf P(H_2^complementcap W_2) \ =~& 2cdot 0.32cdot 0.22 + 0.0608 \ =~& 0.2016end{align}$$
answered Aug 10 '16 at 4:29
Graham Kemp
84k43378
84k43378
What a fantastic answer, not only you immediately spotted my terrible mistake and gave the correct answer, your post is presented in a manner that I can tackle the problem again before checking your hidden solution. I had much fun learning from you. That triangle is really convenient too. Thanks a lot!
– zcahfg2
Aug 10 '16 at 6:38
@GrahamKemp What does $triangle$ mean? Never seen this. Found an answer here math.stackexchange.com/questions/1491702/…
– Antinous
Nov 14 at 10:12
1
Symmetric Set Difference. $Atriangle B = (Asmallsetminus B)cup(Bsmallsetminus A)$
– Graham Kemp
Nov 14 at 11:56
add a comment |
What a fantastic answer, not only you immediately spotted my terrible mistake and gave the correct answer, your post is presented in a manner that I can tackle the problem again before checking your hidden solution. I had much fun learning from you. That triangle is really convenient too. Thanks a lot!
– zcahfg2
Aug 10 '16 at 6:38
@GrahamKemp What does $triangle$ mean? Never seen this. Found an answer here math.stackexchange.com/questions/1491702/…
– Antinous
Nov 14 at 10:12
1
Symmetric Set Difference. $Atriangle B = (Asmallsetminus B)cup(Bsmallsetminus A)$
– Graham Kemp
Nov 14 at 11:56
What a fantastic answer, not only you immediately spotted my terrible mistake and gave the correct answer, your post is presented in a manner that I can tackle the problem again before checking your hidden solution. I had much fun learning from you. That triangle is really convenient too. Thanks a lot!
– zcahfg2
Aug 10 '16 at 6:38
What a fantastic answer, not only you immediately spotted my terrible mistake and gave the correct answer, your post is presented in a manner that I can tackle the problem again before checking your hidden solution. I had much fun learning from you. That triangle is really convenient too. Thanks a lot!
– zcahfg2
Aug 10 '16 at 6:38
@GrahamKemp What does $triangle$ mean? Never seen this. Found an answer here math.stackexchange.com/questions/1491702/…
– Antinous
Nov 14 at 10:12
@GrahamKemp What does $triangle$ mean? Never seen this. Found an answer here math.stackexchange.com/questions/1491702/…
– Antinous
Nov 14 at 10:12
1
1
Symmetric Set Difference. $Atriangle B = (Asmallsetminus B)cup(Bsmallsetminus A)$
– Graham Kemp
Nov 14 at 11:56
Symmetric Set Difference. $Atriangle B = (Asmallsetminus B)cup(Bsmallsetminus A)$
– Graham Kemp
Nov 14 at 11:56
add a comment |
up vote
2
down vote
You seem to be using the probability the husband is retired is $0.8$ and assuming independence between the husband being retired and the wife being retired. As you write the question you might be expected to use $0.7$ for the probability the husband is retired. Under your reading, the probability that only the husband is retired is $0.8(1-0.4)=0.48$ so the probability of exactly one retired is $0.56$ Then in your final calculation where you ask the probability that exactly one husband and one wife is retired, you assume the retired people come from separate couples. It could be that both people of one couple are retired and neither of the other couple.
1
No, zcahfg2 is using $mathsf P(H)=0.7, mathsf P(W)=0.4, mathsf P(Hmid W)=0.8$
– Graham Kemp
Aug 10 '16 at 3:56
add a comment |
up vote
2
down vote
You seem to be using the probability the husband is retired is $0.8$ and assuming independence between the husband being retired and the wife being retired. As you write the question you might be expected to use $0.7$ for the probability the husband is retired. Under your reading, the probability that only the husband is retired is $0.8(1-0.4)=0.48$ so the probability of exactly one retired is $0.56$ Then in your final calculation where you ask the probability that exactly one husband and one wife is retired, you assume the retired people come from separate couples. It could be that both people of one couple are retired and neither of the other couple.
1
No, zcahfg2 is using $mathsf P(H)=0.7, mathsf P(W)=0.4, mathsf P(Hmid W)=0.8$
– Graham Kemp
Aug 10 '16 at 3:56
add a comment |
up vote
2
down vote
up vote
2
down vote
You seem to be using the probability the husband is retired is $0.8$ and assuming independence between the husband being retired and the wife being retired. As you write the question you might be expected to use $0.7$ for the probability the husband is retired. Under your reading, the probability that only the husband is retired is $0.8(1-0.4)=0.48$ so the probability of exactly one retired is $0.56$ Then in your final calculation where you ask the probability that exactly one husband and one wife is retired, you assume the retired people come from separate couples. It could be that both people of one couple are retired and neither of the other couple.
You seem to be using the probability the husband is retired is $0.8$ and assuming independence between the husband being retired and the wife being retired. As you write the question you might be expected to use $0.7$ for the probability the husband is retired. Under your reading, the probability that only the husband is retired is $0.8(1-0.4)=0.48$ so the probability of exactly one retired is $0.56$ Then in your final calculation where you ask the probability that exactly one husband and one wife is retired, you assume the retired people come from separate couples. It could be that both people of one couple are retired and neither of the other couple.
answered Aug 10 '16 at 3:02
Ross Millikan
287k23195364
287k23195364
1
No, zcahfg2 is using $mathsf P(H)=0.7, mathsf P(W)=0.4, mathsf P(Hmid W)=0.8$
– Graham Kemp
Aug 10 '16 at 3:56
add a comment |
1
No, zcahfg2 is using $mathsf P(H)=0.7, mathsf P(W)=0.4, mathsf P(Hmid W)=0.8$
– Graham Kemp
Aug 10 '16 at 3:56
1
1
No, zcahfg2 is using $mathsf P(H)=0.7, mathsf P(W)=0.4, mathsf P(Hmid W)=0.8$
– Graham Kemp
Aug 10 '16 at 3:56
No, zcahfg2 is using $mathsf P(H)=0.7, mathsf P(W)=0.4, mathsf P(Hmid W)=0.8$
– Graham Kemp
Aug 10 '16 at 3:56
add a comment |
up vote
1
down vote
Given the correct question to find...
...the probability that only one of the two husbands and only one of the two wives is retired,
this is how I understood it.
Who are the couples in this scenario? Husband 1 and Wife 1 ($H_1W_1$) and Husband 2 and Wife 2 ($H_2W_2$). These couples may be thought of as choices in a decision tree, where we multiply probabilities "across" and sum "down".
Given the condition that only one husband and one wife can be retired, we have the following possibilities:
$$(H_1W_1)(H_2'W_2')implies P(Hcap W)P(H'cap W')$$
$$(H_1W_1')(H_2'W_2)implies P(Hcap W')P(H'cap W)$$
$$(H_1'W_1)(H_2W_2')implies P(H'cap W)P(Hcap W')$$
$$(H_1'W_1')(H_2W_2)implies P(H'cap W')P(Hcap W)$$
Hence we can sum "down" and collect terms to obtain
$$2P(Hcap W)P(H'cap W')+2P(Hcap W')P(H'cap W)=0.2016.$$
add a comment |
up vote
1
down vote
Given the correct question to find...
...the probability that only one of the two husbands and only one of the two wives is retired,
this is how I understood it.
Who are the couples in this scenario? Husband 1 and Wife 1 ($H_1W_1$) and Husband 2 and Wife 2 ($H_2W_2$). These couples may be thought of as choices in a decision tree, where we multiply probabilities "across" and sum "down".
Given the condition that only one husband and one wife can be retired, we have the following possibilities:
$$(H_1W_1)(H_2'W_2')implies P(Hcap W)P(H'cap W')$$
$$(H_1W_1')(H_2'W_2)implies P(Hcap W')P(H'cap W)$$
$$(H_1'W_1)(H_2W_2')implies P(H'cap W)P(Hcap W')$$
$$(H_1'W_1')(H_2W_2)implies P(H'cap W')P(Hcap W)$$
Hence we can sum "down" and collect terms to obtain
$$2P(Hcap W)P(H'cap W')+2P(Hcap W')P(H'cap W)=0.2016.$$
add a comment |
up vote
1
down vote
up vote
1
down vote
Given the correct question to find...
...the probability that only one of the two husbands and only one of the two wives is retired,
this is how I understood it.
Who are the couples in this scenario? Husband 1 and Wife 1 ($H_1W_1$) and Husband 2 and Wife 2 ($H_2W_2$). These couples may be thought of as choices in a decision tree, where we multiply probabilities "across" and sum "down".
Given the condition that only one husband and one wife can be retired, we have the following possibilities:
$$(H_1W_1)(H_2'W_2')implies P(Hcap W)P(H'cap W')$$
$$(H_1W_1')(H_2'W_2)implies P(Hcap W')P(H'cap W)$$
$$(H_1'W_1)(H_2W_2')implies P(H'cap W)P(Hcap W')$$
$$(H_1'W_1')(H_2W_2)implies P(H'cap W')P(Hcap W)$$
Hence we can sum "down" and collect terms to obtain
$$2P(Hcap W)P(H'cap W')+2P(Hcap W')P(H'cap W)=0.2016.$$
Given the correct question to find...
...the probability that only one of the two husbands and only one of the two wives is retired,
this is how I understood it.
Who are the couples in this scenario? Husband 1 and Wife 1 ($H_1W_1$) and Husband 2 and Wife 2 ($H_2W_2$). These couples may be thought of as choices in a decision tree, where we multiply probabilities "across" and sum "down".
Given the condition that only one husband and one wife can be retired, we have the following possibilities:
$$(H_1W_1)(H_2'W_2')implies P(Hcap W)P(H'cap W')$$
$$(H_1W_1')(H_2'W_2)implies P(Hcap W')P(H'cap W)$$
$$(H_1'W_1)(H_2W_2')implies P(H'cap W)P(Hcap W')$$
$$(H_1'W_1')(H_2W_2)implies P(H'cap W')P(Hcap W)$$
Hence we can sum "down" and collect terms to obtain
$$2P(Hcap W)P(H'cap W')+2P(Hcap W')P(H'cap W)=0.2016.$$
edited Nov 14 at 14:35
answered Nov 14 at 10:41
Antinous
5,55542051
5,55542051
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1887724%2fprobability-that-only-one-of-the-two-husbands-and-only-one-of-the-two-wives-is-r%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
What does "the probability that the husband retire is 0.8." mean? You already said the probability the husband is retired is 0.7. Presumably we are expected to assume there is no correlation between husband retired and wife retired. Is that true?
– Ross Millikan
Aug 10 '16 at 2:53
5
Your title says "probability one of each from two couples is retired" whereas your body says "probability that only one of the two husbands and only one of the two wives is retired." These are different questions. If Mr. X is retired while Ms. X is not and Mr. Y is retired while Ms. Y is not it will satisfy the first question but not the second. On the otherhand, if Mr. X and Ms. X are both retired while Mr. Y and Ms. Y are both not retired, it will satisfy the second question and not the first. At a quick glance it is not clear which of these you want answered, recommend changing title.
– JMoravitz
Aug 10 '16 at 3:01
My deepest aplogies. I was writing this in hurry on my phone before the lecture started and made several mistakes, exactly as many of you kind people suggested. I was going to delete this post but you smart people already figured out my mistake and gave the correct answer. Please accept my sincere apology. This will not happen again
– zcahfg2
Aug 10 '16 at 4:35
I will make sure to edit any remaining errors when the lecture ends.
– zcahfg2
Aug 10 '16 at 4:37