Derivative of $arctanbig (s-sqrt{1+s^{2}}big) $












-1














I am supposed to find the derivative of $f(s) = arctanbig(s-sqrt{1+s^{2}}big) $. My first step was this: $frac{1}{1+ (s-sqrt{1+s^{2}})^{2} } $. What am I supposed to do next? Thanks










share|cite|improve this question
























  • then you could try the chain rule and multiply by the derivative of $s-sqrt{1+s^2}$
    – Timothy Cho
    Nov 24 at 18:33










  • So I get $ frac{1}{1+ (s-sqrt{1+s^{2}})^{2} } * -1 ? $
    – Johny547
    Nov 24 at 18:46
















-1














I am supposed to find the derivative of $f(s) = arctanbig(s-sqrt{1+s^{2}}big) $. My first step was this: $frac{1}{1+ (s-sqrt{1+s^{2}})^{2} } $. What am I supposed to do next? Thanks










share|cite|improve this question
























  • then you could try the chain rule and multiply by the derivative of $s-sqrt{1+s^2}$
    – Timothy Cho
    Nov 24 at 18:33










  • So I get $ frac{1}{1+ (s-sqrt{1+s^{2}})^{2} } * -1 ? $
    – Johny547
    Nov 24 at 18:46














-1












-1








-1







I am supposed to find the derivative of $f(s) = arctanbig(s-sqrt{1+s^{2}}big) $. My first step was this: $frac{1}{1+ (s-sqrt{1+s^{2}})^{2} } $. What am I supposed to do next? Thanks










share|cite|improve this question















I am supposed to find the derivative of $f(s) = arctanbig(s-sqrt{1+s^{2}}big) $. My first step was this: $frac{1}{1+ (s-sqrt{1+s^{2}})^{2} } $. What am I supposed to do next? Thanks







derivatives






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 24 at 18:34









KM101

4,758421




4,758421










asked Nov 24 at 18:31









Johny547

1154




1154












  • then you could try the chain rule and multiply by the derivative of $s-sqrt{1+s^2}$
    – Timothy Cho
    Nov 24 at 18:33










  • So I get $ frac{1}{1+ (s-sqrt{1+s^{2}})^{2} } * -1 ? $
    – Johny547
    Nov 24 at 18:46


















  • then you could try the chain rule and multiply by the derivative of $s-sqrt{1+s^2}$
    – Timothy Cho
    Nov 24 at 18:33










  • So I get $ frac{1}{1+ (s-sqrt{1+s^{2}})^{2} } * -1 ? $
    – Johny547
    Nov 24 at 18:46
















then you could try the chain rule and multiply by the derivative of $s-sqrt{1+s^2}$
– Timothy Cho
Nov 24 at 18:33




then you could try the chain rule and multiply by the derivative of $s-sqrt{1+s^2}$
– Timothy Cho
Nov 24 at 18:33












So I get $ frac{1}{1+ (s-sqrt{1+s^{2}})^{2} } * -1 ? $
– Johny547
Nov 24 at 18:46




So I get $ frac{1}{1+ (s-sqrt{1+s^{2}})^{2} } * -1 ? $
– Johny547
Nov 24 at 18:46










2 Answers
2






active

oldest

votes


















0














May be this method is easier:



$$y=arctan(s-sqrt{1+s^2})$$



$$tan y=(s-sqrt{1+s^2})$$



Differentiating both sides we get:



$$(1+tan^2 y) dy=ds-frac{s}{sqrt{1+s^2}} ds$$



$$y'=frac{dy}{ds}=frac{1}{1+(s-sqrt{1+s^2})^2}.(1-frac{s}{sqrt{1+s^2}})$$






share|cite|improve this answer





























    0














    Use the Chain Rule.



    $$frac{d}{ds} arctan u = frac{1}{1+u^2}cdot color{blue}{frac{du}{ds}} tag{1}$$



    Let $u = s-sqrt{1+s^2}$ and solve for $color{blue}{frac{du}{ds}}$.



    $$color{blue}{frac{du}{ds} = frac{d}{ds}big(s-sqrt{1+s^2}big)}$$



    $$color{blue}{= 1-frac{d}{ds}sqrt{1+s^2}}$$



    Use the Chain Rule once more to find $color{purple}{frac{d}{ds}sqrt{1+s^2}}$.



    $$color{purple}{frac{d}{ds}sqrt{1+s^2} = frac{1}{2sqrt{1+s^2}}cdot2s}$$



    Returning to the blue expression, you get



    $$color{blue}{= 1-frac{2s}{2sqrt{1+s^2}} = 1-frac{s}{sqrt{1+s^2}}} tag{2}$$



    Returning to $(1)$, you get



    $$frac{d}{ds}arctanbig(s-sqrt{1+s^2}big) = frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(1-frac{s}{sqrt{1+s^2}}bigg)$$



    Which can be further simplified (not very easily and neatly).



    $$frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(1-frac{s}{sqrt{1+s^2}}bigg) = frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(frac{sqrt{1+s^2}-s}{sqrt{1+s^2}}bigg)$$



    $$= frac{(sqrt{1+s^2}-s}{big(1+big(s-sqrt{1+s^2}big)^2big)cdotbig(sqrt{1+s^2}big)}$$



    $$= frac{sqrt{1+s^2}-s}{big(1+s^2-2ssqrt{1+s^2}+1+s^2big)cdotbig(sqrt{1+s^2}big)}$$



    $$= frac{sqrt{1+s^2}-s}{big(2+2s^2-2ssqrt{1+s^2}big)cdotbig(sqrt{1+s^2}big)}$$



    $$= frac{sqrt{1+s^2}-s}{2sqrt{1+s^2}+2s^2sqrt{1+s^2}-2s(1+s^2)}$$



    $$= frac{sqrt{1+s^2}-s}{2big(sqrt{1+s^2}+s^2sqrt{1+s^2}-s(1+s^2)big)}$$



    $$= frac{sqrt{1+s^2}-s}{2big(sqrt{1+s^2}(1+s^2)-s(1+s^2)big)}$$



    $$= frac{sqrt{1+s^2}-s}{2big((1+s^2)big(sqrt{1+s^2}-sbig)big)} = frac{1}{2(s^2+1)} = frac{1}{2s^2+2}$$






    share|cite|improve this answer























    • How did you get those 2s? Also is this the final result?
      – Johny547
      Nov 24 at 18:55










    • I differentiated $s-sqrt{1+s^2}$ with respect to $s$ in order to find out $frac{du}{ds}$ to apply it to $(1)$, which gives the final answer (but it can be simplified).
      – KM101
      Nov 24 at 18:57












    • @Johny547 $$frac d{ds} sqrt{v}=frac 1{2sqrt{v}}frac{dv}{ds}$$ If $v=1+s^2$ ...
      – Andrei
      Nov 24 at 19:07













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011910%2fderivative-of-arctan-big-s-sqrt1s2-big%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    May be this method is easier:



    $$y=arctan(s-sqrt{1+s^2})$$



    $$tan y=(s-sqrt{1+s^2})$$



    Differentiating both sides we get:



    $$(1+tan^2 y) dy=ds-frac{s}{sqrt{1+s^2}} ds$$



    $$y'=frac{dy}{ds}=frac{1}{1+(s-sqrt{1+s^2})^2}.(1-frac{s}{sqrt{1+s^2}})$$






    share|cite|improve this answer


























      0














      May be this method is easier:



      $$y=arctan(s-sqrt{1+s^2})$$



      $$tan y=(s-sqrt{1+s^2})$$



      Differentiating both sides we get:



      $$(1+tan^2 y) dy=ds-frac{s}{sqrt{1+s^2}} ds$$



      $$y'=frac{dy}{ds}=frac{1}{1+(s-sqrt{1+s^2})^2}.(1-frac{s}{sqrt{1+s^2}})$$






      share|cite|improve this answer
























        0












        0








        0






        May be this method is easier:



        $$y=arctan(s-sqrt{1+s^2})$$



        $$tan y=(s-sqrt{1+s^2})$$



        Differentiating both sides we get:



        $$(1+tan^2 y) dy=ds-frac{s}{sqrt{1+s^2}} ds$$



        $$y'=frac{dy}{ds}=frac{1}{1+(s-sqrt{1+s^2})^2}.(1-frac{s}{sqrt{1+s^2}})$$






        share|cite|improve this answer












        May be this method is easier:



        $$y=arctan(s-sqrt{1+s^2})$$



        $$tan y=(s-sqrt{1+s^2})$$



        Differentiating both sides we get:



        $$(1+tan^2 y) dy=ds-frac{s}{sqrt{1+s^2}} ds$$



        $$y'=frac{dy}{ds}=frac{1}{1+(s-sqrt{1+s^2})^2}.(1-frac{s}{sqrt{1+s^2}})$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 24 at 19:14









        sirous

        1,5991513




        1,5991513























            0














            Use the Chain Rule.



            $$frac{d}{ds} arctan u = frac{1}{1+u^2}cdot color{blue}{frac{du}{ds}} tag{1}$$



            Let $u = s-sqrt{1+s^2}$ and solve for $color{blue}{frac{du}{ds}}$.



            $$color{blue}{frac{du}{ds} = frac{d}{ds}big(s-sqrt{1+s^2}big)}$$



            $$color{blue}{= 1-frac{d}{ds}sqrt{1+s^2}}$$



            Use the Chain Rule once more to find $color{purple}{frac{d}{ds}sqrt{1+s^2}}$.



            $$color{purple}{frac{d}{ds}sqrt{1+s^2} = frac{1}{2sqrt{1+s^2}}cdot2s}$$



            Returning to the blue expression, you get



            $$color{blue}{= 1-frac{2s}{2sqrt{1+s^2}} = 1-frac{s}{sqrt{1+s^2}}} tag{2}$$



            Returning to $(1)$, you get



            $$frac{d}{ds}arctanbig(s-sqrt{1+s^2}big) = frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(1-frac{s}{sqrt{1+s^2}}bigg)$$



            Which can be further simplified (not very easily and neatly).



            $$frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(1-frac{s}{sqrt{1+s^2}}bigg) = frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(frac{sqrt{1+s^2}-s}{sqrt{1+s^2}}bigg)$$



            $$= frac{(sqrt{1+s^2}-s}{big(1+big(s-sqrt{1+s^2}big)^2big)cdotbig(sqrt{1+s^2}big)}$$



            $$= frac{sqrt{1+s^2}-s}{big(1+s^2-2ssqrt{1+s^2}+1+s^2big)cdotbig(sqrt{1+s^2}big)}$$



            $$= frac{sqrt{1+s^2}-s}{big(2+2s^2-2ssqrt{1+s^2}big)cdotbig(sqrt{1+s^2}big)}$$



            $$= frac{sqrt{1+s^2}-s}{2sqrt{1+s^2}+2s^2sqrt{1+s^2}-2s(1+s^2)}$$



            $$= frac{sqrt{1+s^2}-s}{2big(sqrt{1+s^2}+s^2sqrt{1+s^2}-s(1+s^2)big)}$$



            $$= frac{sqrt{1+s^2}-s}{2big(sqrt{1+s^2}(1+s^2)-s(1+s^2)big)}$$



            $$= frac{sqrt{1+s^2}-s}{2big((1+s^2)big(sqrt{1+s^2}-sbig)big)} = frac{1}{2(s^2+1)} = frac{1}{2s^2+2}$$






            share|cite|improve this answer























            • How did you get those 2s? Also is this the final result?
              – Johny547
              Nov 24 at 18:55










            • I differentiated $s-sqrt{1+s^2}$ with respect to $s$ in order to find out $frac{du}{ds}$ to apply it to $(1)$, which gives the final answer (but it can be simplified).
              – KM101
              Nov 24 at 18:57












            • @Johny547 $$frac d{ds} sqrt{v}=frac 1{2sqrt{v}}frac{dv}{ds}$$ If $v=1+s^2$ ...
              – Andrei
              Nov 24 at 19:07


















            0














            Use the Chain Rule.



            $$frac{d}{ds} arctan u = frac{1}{1+u^2}cdot color{blue}{frac{du}{ds}} tag{1}$$



            Let $u = s-sqrt{1+s^2}$ and solve for $color{blue}{frac{du}{ds}}$.



            $$color{blue}{frac{du}{ds} = frac{d}{ds}big(s-sqrt{1+s^2}big)}$$



            $$color{blue}{= 1-frac{d}{ds}sqrt{1+s^2}}$$



            Use the Chain Rule once more to find $color{purple}{frac{d}{ds}sqrt{1+s^2}}$.



            $$color{purple}{frac{d}{ds}sqrt{1+s^2} = frac{1}{2sqrt{1+s^2}}cdot2s}$$



            Returning to the blue expression, you get



            $$color{blue}{= 1-frac{2s}{2sqrt{1+s^2}} = 1-frac{s}{sqrt{1+s^2}}} tag{2}$$



            Returning to $(1)$, you get



            $$frac{d}{ds}arctanbig(s-sqrt{1+s^2}big) = frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(1-frac{s}{sqrt{1+s^2}}bigg)$$



            Which can be further simplified (not very easily and neatly).



            $$frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(1-frac{s}{sqrt{1+s^2}}bigg) = frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(frac{sqrt{1+s^2}-s}{sqrt{1+s^2}}bigg)$$



            $$= frac{(sqrt{1+s^2}-s}{big(1+big(s-sqrt{1+s^2}big)^2big)cdotbig(sqrt{1+s^2}big)}$$



            $$= frac{sqrt{1+s^2}-s}{big(1+s^2-2ssqrt{1+s^2}+1+s^2big)cdotbig(sqrt{1+s^2}big)}$$



            $$= frac{sqrt{1+s^2}-s}{big(2+2s^2-2ssqrt{1+s^2}big)cdotbig(sqrt{1+s^2}big)}$$



            $$= frac{sqrt{1+s^2}-s}{2sqrt{1+s^2}+2s^2sqrt{1+s^2}-2s(1+s^2)}$$



            $$= frac{sqrt{1+s^2}-s}{2big(sqrt{1+s^2}+s^2sqrt{1+s^2}-s(1+s^2)big)}$$



            $$= frac{sqrt{1+s^2}-s}{2big(sqrt{1+s^2}(1+s^2)-s(1+s^2)big)}$$



            $$= frac{sqrt{1+s^2}-s}{2big((1+s^2)big(sqrt{1+s^2}-sbig)big)} = frac{1}{2(s^2+1)} = frac{1}{2s^2+2}$$






            share|cite|improve this answer























            • How did you get those 2s? Also is this the final result?
              – Johny547
              Nov 24 at 18:55










            • I differentiated $s-sqrt{1+s^2}$ with respect to $s$ in order to find out $frac{du}{ds}$ to apply it to $(1)$, which gives the final answer (but it can be simplified).
              – KM101
              Nov 24 at 18:57












            • @Johny547 $$frac d{ds} sqrt{v}=frac 1{2sqrt{v}}frac{dv}{ds}$$ If $v=1+s^2$ ...
              – Andrei
              Nov 24 at 19:07
















            0












            0








            0






            Use the Chain Rule.



            $$frac{d}{ds} arctan u = frac{1}{1+u^2}cdot color{blue}{frac{du}{ds}} tag{1}$$



            Let $u = s-sqrt{1+s^2}$ and solve for $color{blue}{frac{du}{ds}}$.



            $$color{blue}{frac{du}{ds} = frac{d}{ds}big(s-sqrt{1+s^2}big)}$$



            $$color{blue}{= 1-frac{d}{ds}sqrt{1+s^2}}$$



            Use the Chain Rule once more to find $color{purple}{frac{d}{ds}sqrt{1+s^2}}$.



            $$color{purple}{frac{d}{ds}sqrt{1+s^2} = frac{1}{2sqrt{1+s^2}}cdot2s}$$



            Returning to the blue expression, you get



            $$color{blue}{= 1-frac{2s}{2sqrt{1+s^2}} = 1-frac{s}{sqrt{1+s^2}}} tag{2}$$



            Returning to $(1)$, you get



            $$frac{d}{ds}arctanbig(s-sqrt{1+s^2}big) = frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(1-frac{s}{sqrt{1+s^2}}bigg)$$



            Which can be further simplified (not very easily and neatly).



            $$frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(1-frac{s}{sqrt{1+s^2}}bigg) = frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(frac{sqrt{1+s^2}-s}{sqrt{1+s^2}}bigg)$$



            $$= frac{(sqrt{1+s^2}-s}{big(1+big(s-sqrt{1+s^2}big)^2big)cdotbig(sqrt{1+s^2}big)}$$



            $$= frac{sqrt{1+s^2}-s}{big(1+s^2-2ssqrt{1+s^2}+1+s^2big)cdotbig(sqrt{1+s^2}big)}$$



            $$= frac{sqrt{1+s^2}-s}{big(2+2s^2-2ssqrt{1+s^2}big)cdotbig(sqrt{1+s^2}big)}$$



            $$= frac{sqrt{1+s^2}-s}{2sqrt{1+s^2}+2s^2sqrt{1+s^2}-2s(1+s^2)}$$



            $$= frac{sqrt{1+s^2}-s}{2big(sqrt{1+s^2}+s^2sqrt{1+s^2}-s(1+s^2)big)}$$



            $$= frac{sqrt{1+s^2}-s}{2big(sqrt{1+s^2}(1+s^2)-s(1+s^2)big)}$$



            $$= frac{sqrt{1+s^2}-s}{2big((1+s^2)big(sqrt{1+s^2}-sbig)big)} = frac{1}{2(s^2+1)} = frac{1}{2s^2+2}$$






            share|cite|improve this answer














            Use the Chain Rule.



            $$frac{d}{ds} arctan u = frac{1}{1+u^2}cdot color{blue}{frac{du}{ds}} tag{1}$$



            Let $u = s-sqrt{1+s^2}$ and solve for $color{blue}{frac{du}{ds}}$.



            $$color{blue}{frac{du}{ds} = frac{d}{ds}big(s-sqrt{1+s^2}big)}$$



            $$color{blue}{= 1-frac{d}{ds}sqrt{1+s^2}}$$



            Use the Chain Rule once more to find $color{purple}{frac{d}{ds}sqrt{1+s^2}}$.



            $$color{purple}{frac{d}{ds}sqrt{1+s^2} = frac{1}{2sqrt{1+s^2}}cdot2s}$$



            Returning to the blue expression, you get



            $$color{blue}{= 1-frac{2s}{2sqrt{1+s^2}} = 1-frac{s}{sqrt{1+s^2}}} tag{2}$$



            Returning to $(1)$, you get



            $$frac{d}{ds}arctanbig(s-sqrt{1+s^2}big) = frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(1-frac{s}{sqrt{1+s^2}}bigg)$$



            Which can be further simplified (not very easily and neatly).



            $$frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(1-frac{s}{sqrt{1+s^2}}bigg) = frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(frac{sqrt{1+s^2}-s}{sqrt{1+s^2}}bigg)$$



            $$= frac{(sqrt{1+s^2}-s}{big(1+big(s-sqrt{1+s^2}big)^2big)cdotbig(sqrt{1+s^2}big)}$$



            $$= frac{sqrt{1+s^2}-s}{big(1+s^2-2ssqrt{1+s^2}+1+s^2big)cdotbig(sqrt{1+s^2}big)}$$



            $$= frac{sqrt{1+s^2}-s}{big(2+2s^2-2ssqrt{1+s^2}big)cdotbig(sqrt{1+s^2}big)}$$



            $$= frac{sqrt{1+s^2}-s}{2sqrt{1+s^2}+2s^2sqrt{1+s^2}-2s(1+s^2)}$$



            $$= frac{sqrt{1+s^2}-s}{2big(sqrt{1+s^2}+s^2sqrt{1+s^2}-s(1+s^2)big)}$$



            $$= frac{sqrt{1+s^2}-s}{2big(sqrt{1+s^2}(1+s^2)-s(1+s^2)big)}$$



            $$= frac{sqrt{1+s^2}-s}{2big((1+s^2)big(sqrt{1+s^2}-sbig)big)} = frac{1}{2(s^2+1)} = frac{1}{2s^2+2}$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Nov 24 at 19:54

























            answered Nov 24 at 18:49









            KM101

            4,758421




            4,758421












            • How did you get those 2s? Also is this the final result?
              – Johny547
              Nov 24 at 18:55










            • I differentiated $s-sqrt{1+s^2}$ with respect to $s$ in order to find out $frac{du}{ds}$ to apply it to $(1)$, which gives the final answer (but it can be simplified).
              – KM101
              Nov 24 at 18:57












            • @Johny547 $$frac d{ds} sqrt{v}=frac 1{2sqrt{v}}frac{dv}{ds}$$ If $v=1+s^2$ ...
              – Andrei
              Nov 24 at 19:07




















            • How did you get those 2s? Also is this the final result?
              – Johny547
              Nov 24 at 18:55










            • I differentiated $s-sqrt{1+s^2}$ with respect to $s$ in order to find out $frac{du}{ds}$ to apply it to $(1)$, which gives the final answer (but it can be simplified).
              – KM101
              Nov 24 at 18:57












            • @Johny547 $$frac d{ds} sqrt{v}=frac 1{2sqrt{v}}frac{dv}{ds}$$ If $v=1+s^2$ ...
              – Andrei
              Nov 24 at 19:07


















            How did you get those 2s? Also is this the final result?
            – Johny547
            Nov 24 at 18:55




            How did you get those 2s? Also is this the final result?
            – Johny547
            Nov 24 at 18:55












            I differentiated $s-sqrt{1+s^2}$ with respect to $s$ in order to find out $frac{du}{ds}$ to apply it to $(1)$, which gives the final answer (but it can be simplified).
            – KM101
            Nov 24 at 18:57






            I differentiated $s-sqrt{1+s^2}$ with respect to $s$ in order to find out $frac{du}{ds}$ to apply it to $(1)$, which gives the final answer (but it can be simplified).
            – KM101
            Nov 24 at 18:57














            @Johny547 $$frac d{ds} sqrt{v}=frac 1{2sqrt{v}}frac{dv}{ds}$$ If $v=1+s^2$ ...
            – Andrei
            Nov 24 at 19:07






            @Johny547 $$frac d{ds} sqrt{v}=frac 1{2sqrt{v}}frac{dv}{ds}$$ If $v=1+s^2$ ...
            – Andrei
            Nov 24 at 19:07




















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011910%2fderivative-of-arctan-big-s-sqrt1s2-big%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Plaza Victoria

            In PowerPoint, is there a keyboard shortcut for bulleted / numbered list?

            How to put 3 figures in Latex with 2 figures side by side and 1 below these side by side images but in...