Derivative of $arctanbig (s-sqrt{1+s^{2}}big) $
I am supposed to find the derivative of $f(s) = arctanbig(s-sqrt{1+s^{2}}big) $. My first step was this: $frac{1}{1+ (s-sqrt{1+s^{2}})^{2} } $. What am I supposed to do next? Thanks
derivatives
add a comment |
I am supposed to find the derivative of $f(s) = arctanbig(s-sqrt{1+s^{2}}big) $. My first step was this: $frac{1}{1+ (s-sqrt{1+s^{2}})^{2} } $. What am I supposed to do next? Thanks
derivatives
then you could try the chain rule and multiply by the derivative of $s-sqrt{1+s^2}$
– Timothy Cho
Nov 24 at 18:33
So I get $ frac{1}{1+ (s-sqrt{1+s^{2}})^{2} } * -1 ? $
– Johny547
Nov 24 at 18:46
add a comment |
I am supposed to find the derivative of $f(s) = arctanbig(s-sqrt{1+s^{2}}big) $. My first step was this: $frac{1}{1+ (s-sqrt{1+s^{2}})^{2} } $. What am I supposed to do next? Thanks
derivatives
I am supposed to find the derivative of $f(s) = arctanbig(s-sqrt{1+s^{2}}big) $. My first step was this: $frac{1}{1+ (s-sqrt{1+s^{2}})^{2} } $. What am I supposed to do next? Thanks
derivatives
derivatives
edited Nov 24 at 18:34
KM101
4,758421
4,758421
asked Nov 24 at 18:31
Johny547
1154
1154
then you could try the chain rule and multiply by the derivative of $s-sqrt{1+s^2}$
– Timothy Cho
Nov 24 at 18:33
So I get $ frac{1}{1+ (s-sqrt{1+s^{2}})^{2} } * -1 ? $
– Johny547
Nov 24 at 18:46
add a comment |
then you could try the chain rule and multiply by the derivative of $s-sqrt{1+s^2}$
– Timothy Cho
Nov 24 at 18:33
So I get $ frac{1}{1+ (s-sqrt{1+s^{2}})^{2} } * -1 ? $
– Johny547
Nov 24 at 18:46
then you could try the chain rule and multiply by the derivative of $s-sqrt{1+s^2}$
– Timothy Cho
Nov 24 at 18:33
then you could try the chain rule and multiply by the derivative of $s-sqrt{1+s^2}$
– Timothy Cho
Nov 24 at 18:33
So I get $ frac{1}{1+ (s-sqrt{1+s^{2}})^{2} } * -1 ? $
– Johny547
Nov 24 at 18:46
So I get $ frac{1}{1+ (s-sqrt{1+s^{2}})^{2} } * -1 ? $
– Johny547
Nov 24 at 18:46
add a comment |
2 Answers
2
active
oldest
votes
May be this method is easier:
$$y=arctan(s-sqrt{1+s^2})$$
$$tan y=(s-sqrt{1+s^2})$$
Differentiating both sides we get:
$$(1+tan^2 y) dy=ds-frac{s}{sqrt{1+s^2}} ds$$
$$y'=frac{dy}{ds}=frac{1}{1+(s-sqrt{1+s^2})^2}.(1-frac{s}{sqrt{1+s^2}})$$
add a comment |
Use the Chain Rule.
$$frac{d}{ds} arctan u = frac{1}{1+u^2}cdot color{blue}{frac{du}{ds}} tag{1}$$
Let $u = s-sqrt{1+s^2}$ and solve for $color{blue}{frac{du}{ds}}$.
$$color{blue}{frac{du}{ds} = frac{d}{ds}big(s-sqrt{1+s^2}big)}$$
$$color{blue}{= 1-frac{d}{ds}sqrt{1+s^2}}$$
Use the Chain Rule once more to find $color{purple}{frac{d}{ds}sqrt{1+s^2}}$.
$$color{purple}{frac{d}{ds}sqrt{1+s^2} = frac{1}{2sqrt{1+s^2}}cdot2s}$$
Returning to the blue expression, you get
$$color{blue}{= 1-frac{2s}{2sqrt{1+s^2}} = 1-frac{s}{sqrt{1+s^2}}} tag{2}$$
Returning to $(1)$, you get
$$frac{d}{ds}arctanbig(s-sqrt{1+s^2}big) = frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(1-frac{s}{sqrt{1+s^2}}bigg)$$
Which can be further simplified (not very easily and neatly).
$$frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(1-frac{s}{sqrt{1+s^2}}bigg) = frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(frac{sqrt{1+s^2}-s}{sqrt{1+s^2}}bigg)$$
$$= frac{(sqrt{1+s^2}-s}{big(1+big(s-sqrt{1+s^2}big)^2big)cdotbig(sqrt{1+s^2}big)}$$
$$= frac{sqrt{1+s^2}-s}{big(1+s^2-2ssqrt{1+s^2}+1+s^2big)cdotbig(sqrt{1+s^2}big)}$$
$$= frac{sqrt{1+s^2}-s}{big(2+2s^2-2ssqrt{1+s^2}big)cdotbig(sqrt{1+s^2}big)}$$
$$= frac{sqrt{1+s^2}-s}{2sqrt{1+s^2}+2s^2sqrt{1+s^2}-2s(1+s^2)}$$
$$= frac{sqrt{1+s^2}-s}{2big(sqrt{1+s^2}+s^2sqrt{1+s^2}-s(1+s^2)big)}$$
$$= frac{sqrt{1+s^2}-s}{2big(sqrt{1+s^2}(1+s^2)-s(1+s^2)big)}$$
$$= frac{sqrt{1+s^2}-s}{2big((1+s^2)big(sqrt{1+s^2}-sbig)big)} = frac{1}{2(s^2+1)} = frac{1}{2s^2+2}$$
How did you get those 2s? Also is this the final result?
– Johny547
Nov 24 at 18:55
I differentiated $s-sqrt{1+s^2}$ with respect to $s$ in order to find out $frac{du}{ds}$ to apply it to $(1)$, which gives the final answer (but it can be simplified).
– KM101
Nov 24 at 18:57
@Johny547 $$frac d{ds} sqrt{v}=frac 1{2sqrt{v}}frac{dv}{ds}$$ If $v=1+s^2$ ...
– Andrei
Nov 24 at 19:07
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011910%2fderivative-of-arctan-big-s-sqrt1s2-big%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
May be this method is easier:
$$y=arctan(s-sqrt{1+s^2})$$
$$tan y=(s-sqrt{1+s^2})$$
Differentiating both sides we get:
$$(1+tan^2 y) dy=ds-frac{s}{sqrt{1+s^2}} ds$$
$$y'=frac{dy}{ds}=frac{1}{1+(s-sqrt{1+s^2})^2}.(1-frac{s}{sqrt{1+s^2}})$$
add a comment |
May be this method is easier:
$$y=arctan(s-sqrt{1+s^2})$$
$$tan y=(s-sqrt{1+s^2})$$
Differentiating both sides we get:
$$(1+tan^2 y) dy=ds-frac{s}{sqrt{1+s^2}} ds$$
$$y'=frac{dy}{ds}=frac{1}{1+(s-sqrt{1+s^2})^2}.(1-frac{s}{sqrt{1+s^2}})$$
add a comment |
May be this method is easier:
$$y=arctan(s-sqrt{1+s^2})$$
$$tan y=(s-sqrt{1+s^2})$$
Differentiating both sides we get:
$$(1+tan^2 y) dy=ds-frac{s}{sqrt{1+s^2}} ds$$
$$y'=frac{dy}{ds}=frac{1}{1+(s-sqrt{1+s^2})^2}.(1-frac{s}{sqrt{1+s^2}})$$
May be this method is easier:
$$y=arctan(s-sqrt{1+s^2})$$
$$tan y=(s-sqrt{1+s^2})$$
Differentiating both sides we get:
$$(1+tan^2 y) dy=ds-frac{s}{sqrt{1+s^2}} ds$$
$$y'=frac{dy}{ds}=frac{1}{1+(s-sqrt{1+s^2})^2}.(1-frac{s}{sqrt{1+s^2}})$$
answered Nov 24 at 19:14
sirous
1,5991513
1,5991513
add a comment |
add a comment |
Use the Chain Rule.
$$frac{d}{ds} arctan u = frac{1}{1+u^2}cdot color{blue}{frac{du}{ds}} tag{1}$$
Let $u = s-sqrt{1+s^2}$ and solve for $color{blue}{frac{du}{ds}}$.
$$color{blue}{frac{du}{ds} = frac{d}{ds}big(s-sqrt{1+s^2}big)}$$
$$color{blue}{= 1-frac{d}{ds}sqrt{1+s^2}}$$
Use the Chain Rule once more to find $color{purple}{frac{d}{ds}sqrt{1+s^2}}$.
$$color{purple}{frac{d}{ds}sqrt{1+s^2} = frac{1}{2sqrt{1+s^2}}cdot2s}$$
Returning to the blue expression, you get
$$color{blue}{= 1-frac{2s}{2sqrt{1+s^2}} = 1-frac{s}{sqrt{1+s^2}}} tag{2}$$
Returning to $(1)$, you get
$$frac{d}{ds}arctanbig(s-sqrt{1+s^2}big) = frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(1-frac{s}{sqrt{1+s^2}}bigg)$$
Which can be further simplified (not very easily and neatly).
$$frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(1-frac{s}{sqrt{1+s^2}}bigg) = frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(frac{sqrt{1+s^2}-s}{sqrt{1+s^2}}bigg)$$
$$= frac{(sqrt{1+s^2}-s}{big(1+big(s-sqrt{1+s^2}big)^2big)cdotbig(sqrt{1+s^2}big)}$$
$$= frac{sqrt{1+s^2}-s}{big(1+s^2-2ssqrt{1+s^2}+1+s^2big)cdotbig(sqrt{1+s^2}big)}$$
$$= frac{sqrt{1+s^2}-s}{big(2+2s^2-2ssqrt{1+s^2}big)cdotbig(sqrt{1+s^2}big)}$$
$$= frac{sqrt{1+s^2}-s}{2sqrt{1+s^2}+2s^2sqrt{1+s^2}-2s(1+s^2)}$$
$$= frac{sqrt{1+s^2}-s}{2big(sqrt{1+s^2}+s^2sqrt{1+s^2}-s(1+s^2)big)}$$
$$= frac{sqrt{1+s^2}-s}{2big(sqrt{1+s^2}(1+s^2)-s(1+s^2)big)}$$
$$= frac{sqrt{1+s^2}-s}{2big((1+s^2)big(sqrt{1+s^2}-sbig)big)} = frac{1}{2(s^2+1)} = frac{1}{2s^2+2}$$
How did you get those 2s? Also is this the final result?
– Johny547
Nov 24 at 18:55
I differentiated $s-sqrt{1+s^2}$ with respect to $s$ in order to find out $frac{du}{ds}$ to apply it to $(1)$, which gives the final answer (but it can be simplified).
– KM101
Nov 24 at 18:57
@Johny547 $$frac d{ds} sqrt{v}=frac 1{2sqrt{v}}frac{dv}{ds}$$ If $v=1+s^2$ ...
– Andrei
Nov 24 at 19:07
add a comment |
Use the Chain Rule.
$$frac{d}{ds} arctan u = frac{1}{1+u^2}cdot color{blue}{frac{du}{ds}} tag{1}$$
Let $u = s-sqrt{1+s^2}$ and solve for $color{blue}{frac{du}{ds}}$.
$$color{blue}{frac{du}{ds} = frac{d}{ds}big(s-sqrt{1+s^2}big)}$$
$$color{blue}{= 1-frac{d}{ds}sqrt{1+s^2}}$$
Use the Chain Rule once more to find $color{purple}{frac{d}{ds}sqrt{1+s^2}}$.
$$color{purple}{frac{d}{ds}sqrt{1+s^2} = frac{1}{2sqrt{1+s^2}}cdot2s}$$
Returning to the blue expression, you get
$$color{blue}{= 1-frac{2s}{2sqrt{1+s^2}} = 1-frac{s}{sqrt{1+s^2}}} tag{2}$$
Returning to $(1)$, you get
$$frac{d}{ds}arctanbig(s-sqrt{1+s^2}big) = frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(1-frac{s}{sqrt{1+s^2}}bigg)$$
Which can be further simplified (not very easily and neatly).
$$frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(1-frac{s}{sqrt{1+s^2}}bigg) = frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(frac{sqrt{1+s^2}-s}{sqrt{1+s^2}}bigg)$$
$$= frac{(sqrt{1+s^2}-s}{big(1+big(s-sqrt{1+s^2}big)^2big)cdotbig(sqrt{1+s^2}big)}$$
$$= frac{sqrt{1+s^2}-s}{big(1+s^2-2ssqrt{1+s^2}+1+s^2big)cdotbig(sqrt{1+s^2}big)}$$
$$= frac{sqrt{1+s^2}-s}{big(2+2s^2-2ssqrt{1+s^2}big)cdotbig(sqrt{1+s^2}big)}$$
$$= frac{sqrt{1+s^2}-s}{2sqrt{1+s^2}+2s^2sqrt{1+s^2}-2s(1+s^2)}$$
$$= frac{sqrt{1+s^2}-s}{2big(sqrt{1+s^2}+s^2sqrt{1+s^2}-s(1+s^2)big)}$$
$$= frac{sqrt{1+s^2}-s}{2big(sqrt{1+s^2}(1+s^2)-s(1+s^2)big)}$$
$$= frac{sqrt{1+s^2}-s}{2big((1+s^2)big(sqrt{1+s^2}-sbig)big)} = frac{1}{2(s^2+1)} = frac{1}{2s^2+2}$$
How did you get those 2s? Also is this the final result?
– Johny547
Nov 24 at 18:55
I differentiated $s-sqrt{1+s^2}$ with respect to $s$ in order to find out $frac{du}{ds}$ to apply it to $(1)$, which gives the final answer (but it can be simplified).
– KM101
Nov 24 at 18:57
@Johny547 $$frac d{ds} sqrt{v}=frac 1{2sqrt{v}}frac{dv}{ds}$$ If $v=1+s^2$ ...
– Andrei
Nov 24 at 19:07
add a comment |
Use the Chain Rule.
$$frac{d}{ds} arctan u = frac{1}{1+u^2}cdot color{blue}{frac{du}{ds}} tag{1}$$
Let $u = s-sqrt{1+s^2}$ and solve for $color{blue}{frac{du}{ds}}$.
$$color{blue}{frac{du}{ds} = frac{d}{ds}big(s-sqrt{1+s^2}big)}$$
$$color{blue}{= 1-frac{d}{ds}sqrt{1+s^2}}$$
Use the Chain Rule once more to find $color{purple}{frac{d}{ds}sqrt{1+s^2}}$.
$$color{purple}{frac{d}{ds}sqrt{1+s^2} = frac{1}{2sqrt{1+s^2}}cdot2s}$$
Returning to the blue expression, you get
$$color{blue}{= 1-frac{2s}{2sqrt{1+s^2}} = 1-frac{s}{sqrt{1+s^2}}} tag{2}$$
Returning to $(1)$, you get
$$frac{d}{ds}arctanbig(s-sqrt{1+s^2}big) = frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(1-frac{s}{sqrt{1+s^2}}bigg)$$
Which can be further simplified (not very easily and neatly).
$$frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(1-frac{s}{sqrt{1+s^2}}bigg) = frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(frac{sqrt{1+s^2}-s}{sqrt{1+s^2}}bigg)$$
$$= frac{(sqrt{1+s^2}-s}{big(1+big(s-sqrt{1+s^2}big)^2big)cdotbig(sqrt{1+s^2}big)}$$
$$= frac{sqrt{1+s^2}-s}{big(1+s^2-2ssqrt{1+s^2}+1+s^2big)cdotbig(sqrt{1+s^2}big)}$$
$$= frac{sqrt{1+s^2}-s}{big(2+2s^2-2ssqrt{1+s^2}big)cdotbig(sqrt{1+s^2}big)}$$
$$= frac{sqrt{1+s^2}-s}{2sqrt{1+s^2}+2s^2sqrt{1+s^2}-2s(1+s^2)}$$
$$= frac{sqrt{1+s^2}-s}{2big(sqrt{1+s^2}+s^2sqrt{1+s^2}-s(1+s^2)big)}$$
$$= frac{sqrt{1+s^2}-s}{2big(sqrt{1+s^2}(1+s^2)-s(1+s^2)big)}$$
$$= frac{sqrt{1+s^2}-s}{2big((1+s^2)big(sqrt{1+s^2}-sbig)big)} = frac{1}{2(s^2+1)} = frac{1}{2s^2+2}$$
Use the Chain Rule.
$$frac{d}{ds} arctan u = frac{1}{1+u^2}cdot color{blue}{frac{du}{ds}} tag{1}$$
Let $u = s-sqrt{1+s^2}$ and solve for $color{blue}{frac{du}{ds}}$.
$$color{blue}{frac{du}{ds} = frac{d}{ds}big(s-sqrt{1+s^2}big)}$$
$$color{blue}{= 1-frac{d}{ds}sqrt{1+s^2}}$$
Use the Chain Rule once more to find $color{purple}{frac{d}{ds}sqrt{1+s^2}}$.
$$color{purple}{frac{d}{ds}sqrt{1+s^2} = frac{1}{2sqrt{1+s^2}}cdot2s}$$
Returning to the blue expression, you get
$$color{blue}{= 1-frac{2s}{2sqrt{1+s^2}} = 1-frac{s}{sqrt{1+s^2}}} tag{2}$$
Returning to $(1)$, you get
$$frac{d}{ds}arctanbig(s-sqrt{1+s^2}big) = frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(1-frac{s}{sqrt{1+s^2}}bigg)$$
Which can be further simplified (not very easily and neatly).
$$frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(1-frac{s}{sqrt{1+s^2}}bigg) = frac{1}{1+big(s-sqrt{1+s^2}big)^2}cdotbigg(frac{sqrt{1+s^2}-s}{sqrt{1+s^2}}bigg)$$
$$= frac{(sqrt{1+s^2}-s}{big(1+big(s-sqrt{1+s^2}big)^2big)cdotbig(sqrt{1+s^2}big)}$$
$$= frac{sqrt{1+s^2}-s}{big(1+s^2-2ssqrt{1+s^2}+1+s^2big)cdotbig(sqrt{1+s^2}big)}$$
$$= frac{sqrt{1+s^2}-s}{big(2+2s^2-2ssqrt{1+s^2}big)cdotbig(sqrt{1+s^2}big)}$$
$$= frac{sqrt{1+s^2}-s}{2sqrt{1+s^2}+2s^2sqrt{1+s^2}-2s(1+s^2)}$$
$$= frac{sqrt{1+s^2}-s}{2big(sqrt{1+s^2}+s^2sqrt{1+s^2}-s(1+s^2)big)}$$
$$= frac{sqrt{1+s^2}-s}{2big(sqrt{1+s^2}(1+s^2)-s(1+s^2)big)}$$
$$= frac{sqrt{1+s^2}-s}{2big((1+s^2)big(sqrt{1+s^2}-sbig)big)} = frac{1}{2(s^2+1)} = frac{1}{2s^2+2}$$
edited Nov 24 at 19:54
answered Nov 24 at 18:49
KM101
4,758421
4,758421
How did you get those 2s? Also is this the final result?
– Johny547
Nov 24 at 18:55
I differentiated $s-sqrt{1+s^2}$ with respect to $s$ in order to find out $frac{du}{ds}$ to apply it to $(1)$, which gives the final answer (but it can be simplified).
– KM101
Nov 24 at 18:57
@Johny547 $$frac d{ds} sqrt{v}=frac 1{2sqrt{v}}frac{dv}{ds}$$ If $v=1+s^2$ ...
– Andrei
Nov 24 at 19:07
add a comment |
How did you get those 2s? Also is this the final result?
– Johny547
Nov 24 at 18:55
I differentiated $s-sqrt{1+s^2}$ with respect to $s$ in order to find out $frac{du}{ds}$ to apply it to $(1)$, which gives the final answer (but it can be simplified).
– KM101
Nov 24 at 18:57
@Johny547 $$frac d{ds} sqrt{v}=frac 1{2sqrt{v}}frac{dv}{ds}$$ If $v=1+s^2$ ...
– Andrei
Nov 24 at 19:07
How did you get those 2s? Also is this the final result?
– Johny547
Nov 24 at 18:55
How did you get those 2s? Also is this the final result?
– Johny547
Nov 24 at 18:55
I differentiated $s-sqrt{1+s^2}$ with respect to $s$ in order to find out $frac{du}{ds}$ to apply it to $(1)$, which gives the final answer (but it can be simplified).
– KM101
Nov 24 at 18:57
I differentiated $s-sqrt{1+s^2}$ with respect to $s$ in order to find out $frac{du}{ds}$ to apply it to $(1)$, which gives the final answer (but it can be simplified).
– KM101
Nov 24 at 18:57
@Johny547 $$frac d{ds} sqrt{v}=frac 1{2sqrt{v}}frac{dv}{ds}$$ If $v=1+s^2$ ...
– Andrei
Nov 24 at 19:07
@Johny547 $$frac d{ds} sqrt{v}=frac 1{2sqrt{v}}frac{dv}{ds}$$ If $v=1+s^2$ ...
– Andrei
Nov 24 at 19:07
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011910%2fderivative-of-arctan-big-s-sqrt1s2-big%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
then you could try the chain rule and multiply by the derivative of $s-sqrt{1+s^2}$
– Timothy Cho
Nov 24 at 18:33
So I get $ frac{1}{1+ (s-sqrt{1+s^{2}})^{2} } * -1 ? $
– Johny547
Nov 24 at 18:46