How to integrate $int e^{2x}sin(3x)dx$ by parts?












1














$$int e^{2x}sin(3x)dx$$



First I set $u = e^{2x}, v' = cos(3x)$
to get:



$$int e^{2x}sin(3x)dx = -frac{e^{3x}}{3}cos(3x) + frac{2}{3}int e^{2x}cos(3x)dx$$



Applying integration by parts again yields:



$$-frac{e^{2x}}{3}cos(3x) + frac{2}{3}left(frac{e^{2x}}{3}sin(3x) -frac{2}{3}int e^{2x}sin(3x)dxright)$$



And it just keeps going on and on and I'm stuck. How can I solve this?










share|cite|improve this question




















  • 1




    Remember, the expression you wrote is equal to your original integral. Try to add your similar integral on the right to the one on the left!
    – Zach
    Nov 24 at 18:15
















1














$$int e^{2x}sin(3x)dx$$



First I set $u = e^{2x}, v' = cos(3x)$
to get:



$$int e^{2x}sin(3x)dx = -frac{e^{3x}}{3}cos(3x) + frac{2}{3}int e^{2x}cos(3x)dx$$



Applying integration by parts again yields:



$$-frac{e^{2x}}{3}cos(3x) + frac{2}{3}left(frac{e^{2x}}{3}sin(3x) -frac{2}{3}int e^{2x}sin(3x)dxright)$$



And it just keeps going on and on and I'm stuck. How can I solve this?










share|cite|improve this question




















  • 1




    Remember, the expression you wrote is equal to your original integral. Try to add your similar integral on the right to the one on the left!
    – Zach
    Nov 24 at 18:15














1












1








1







$$int e^{2x}sin(3x)dx$$



First I set $u = e^{2x}, v' = cos(3x)$
to get:



$$int e^{2x}sin(3x)dx = -frac{e^{3x}}{3}cos(3x) + frac{2}{3}int e^{2x}cos(3x)dx$$



Applying integration by parts again yields:



$$-frac{e^{2x}}{3}cos(3x) + frac{2}{3}left(frac{e^{2x}}{3}sin(3x) -frac{2}{3}int e^{2x}sin(3x)dxright)$$



And it just keeps going on and on and I'm stuck. How can I solve this?










share|cite|improve this question















$$int e^{2x}sin(3x)dx$$



First I set $u = e^{2x}, v' = cos(3x)$
to get:



$$int e^{2x}sin(3x)dx = -frac{e^{3x}}{3}cos(3x) + frac{2}{3}int e^{2x}cos(3x)dx$$



Applying integration by parts again yields:



$$-frac{e^{2x}}{3}cos(3x) + frac{2}{3}left(frac{e^{2x}}{3}sin(3x) -frac{2}{3}int e^{2x}sin(3x)dxright)$$



And it just keeps going on and on and I'm stuck. How can I solve this?







integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 24 at 18:19









mrtaurho

3,41121032




3,41121032










asked Nov 24 at 18:08









Trey

304113




304113








  • 1




    Remember, the expression you wrote is equal to your original integral. Try to add your similar integral on the right to the one on the left!
    – Zach
    Nov 24 at 18:15














  • 1




    Remember, the expression you wrote is equal to your original integral. Try to add your similar integral on the right to the one on the left!
    – Zach
    Nov 24 at 18:15








1




1




Remember, the expression you wrote is equal to your original integral. Try to add your similar integral on the right to the one on the left!
– Zach
Nov 24 at 18:15




Remember, the expression you wrote is equal to your original integral. Try to add your similar integral on the right to the one on the left!
– Zach
Nov 24 at 18:15










5 Answers
5






active

oldest

votes


















2














You are almost done. Lets denote your given integral as



$$I=int e^{2x}sin(3x)dx$$



Lets take a closer look at your final formula



$$begin{align}
I&=-frac{e^{2x}}3cos(3x)+frac23left(frac{e^{2x}}3sin(3x)-frac23underbrace{int e^{2x}sin(3x)dx}_{=I}right)\
I&=-frac{e^{2x}}3cos(3x)+frac23left(frac{e^{2x}}3sin(3x)-frac23Iright)\
I&=-frac{e^{2x}}3cos(3x)+frac29e^{2x}sin(3x)-frac49I\
Leftrightarrow I+frac49I&=e^{2x}left(frac29sin(3x)-frac13cos(3x)right)\
I&=frac9{13}e^{2x}left(frac29sin(3x)-frac13cos(3x)right)\
I&=frac{e^{2x}}{13}left(2sin(3x)-3cos(3x)right)+c
end{align}$$



Note that this can be done in a more general way for in order to integrate the function $e^{ax}sin(bx)$ which turns out to equal



$$int e^{ax}sin(bx)dx=frac{e^{ax}}{a^2+b^2}(asin(bx)-bcos(bx))+c$$






share|cite|improve this answer





























    4














    You almost have it! Put



    $$I:=int e^{2x}sin 3x,dx$$



    and now take your last line:



    $$I=-frac{e^{2x}}{3}cos3x + frac{2}{3}left(frac{e^{2x}}{3}sin3x -frac{2}{3}int e^{2x}sin3x,dxright)=frac{e^{2x}}{3}cos3x + frac{2}{9}e^{2x}sin3x -color{red}{frac{4}{9}int e^{2x}sin3x}implies$$



    $$impliesfrac{13}9I=frac{e^{2x}}{3}cos3x + frac{2}{9}e^{2x}sin3x$$



    and now end the exercise.






    share|cite|improve this answer































      2














      $displaystyle I=int(e^{2x}sin3x)dx=dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}+intdfrac{9e^{2x}(-sin3x)dx}{4}$



      $=dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}-dfrac{9I}{4}$



      $I=dfrac{4}{13}left(dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}right)+C$



      (Note: The result of indefinite integral is not unique.)






      share|cite|improve this answer





























        0














        $$I=int e^{ax}sin bx mathrm{d}x$$
        $$mathrm{d}v=sin bx mathrm{d}xRightarrow v=-frac1bcos bx\u=e^{ax}Rightarrow mathrm{d}u=ae^{ax}mathrm{d}x$$
        $$I=-frac{e^{ax}}bcos bx+frac abint e^{ax}cos bx mathrm{d}x$$
        $$mathrm{d}v=cos bx mathrm{d}xRightarrow v=frac1bsin bx\u=e^{ax}Rightarrow mathrm{d}u=ae^{ax}mathrm{d}x$$
        $$I=-frac{e^{ax}}bcos bx+frac abbigg(frac{e^{ax}}{b}sin bx-frac abint e^{ax}sin bx mathrm{d}xbigg)$$
        $$I=-frac{e^{ax}}bcos bx+frac{ae^{ax}}{b^2}sin bx-frac{a^2}{b^2}I$$
        $$bigg(1+frac{a^2}{b^2}bigg)I=frac{e^{ax}}bbigg(frac absin bx-cos bxbigg)$$
        $$I=frac{b^2}{a^2+b^2}frac{e^{ax}}bbigg(frac absin bx-cos bxbigg)$$
        $$I=frac{e^{ax}}{a^2+b^2}big(asin bx-bcos bxbig)+C$$






        share|cite|improve this answer





























          0














          how about this:
          $$I=int e^{2x}sin(3x)dx=frac{-e^{2x}cos(3x)}{3}+intfrac{2cos(3x)e^{2x}}{3}dx$$
          $$=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}-intfrac{4sin(3x)e^{2x}}{9}dx$$
          $$I=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}-frac{4}{9}I$$
          so:
          $$frac{13}{9}I=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}$$






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011872%2fhow-to-integrate-int-e2x-sin3xdx-by-parts%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            5 Answers
            5






            active

            oldest

            votes








            5 Answers
            5






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2














            You are almost done. Lets denote your given integral as



            $$I=int e^{2x}sin(3x)dx$$



            Lets take a closer look at your final formula



            $$begin{align}
            I&=-frac{e^{2x}}3cos(3x)+frac23left(frac{e^{2x}}3sin(3x)-frac23underbrace{int e^{2x}sin(3x)dx}_{=I}right)\
            I&=-frac{e^{2x}}3cos(3x)+frac23left(frac{e^{2x}}3sin(3x)-frac23Iright)\
            I&=-frac{e^{2x}}3cos(3x)+frac29e^{2x}sin(3x)-frac49I\
            Leftrightarrow I+frac49I&=e^{2x}left(frac29sin(3x)-frac13cos(3x)right)\
            I&=frac9{13}e^{2x}left(frac29sin(3x)-frac13cos(3x)right)\
            I&=frac{e^{2x}}{13}left(2sin(3x)-3cos(3x)right)+c
            end{align}$$



            Note that this can be done in a more general way for in order to integrate the function $e^{ax}sin(bx)$ which turns out to equal



            $$int e^{ax}sin(bx)dx=frac{e^{ax}}{a^2+b^2}(asin(bx)-bcos(bx))+c$$






            share|cite|improve this answer


























              2














              You are almost done. Lets denote your given integral as



              $$I=int e^{2x}sin(3x)dx$$



              Lets take a closer look at your final formula



              $$begin{align}
              I&=-frac{e^{2x}}3cos(3x)+frac23left(frac{e^{2x}}3sin(3x)-frac23underbrace{int e^{2x}sin(3x)dx}_{=I}right)\
              I&=-frac{e^{2x}}3cos(3x)+frac23left(frac{e^{2x}}3sin(3x)-frac23Iright)\
              I&=-frac{e^{2x}}3cos(3x)+frac29e^{2x}sin(3x)-frac49I\
              Leftrightarrow I+frac49I&=e^{2x}left(frac29sin(3x)-frac13cos(3x)right)\
              I&=frac9{13}e^{2x}left(frac29sin(3x)-frac13cos(3x)right)\
              I&=frac{e^{2x}}{13}left(2sin(3x)-3cos(3x)right)+c
              end{align}$$



              Note that this can be done in a more general way for in order to integrate the function $e^{ax}sin(bx)$ which turns out to equal



              $$int e^{ax}sin(bx)dx=frac{e^{ax}}{a^2+b^2}(asin(bx)-bcos(bx))+c$$






              share|cite|improve this answer
























                2












                2








                2






                You are almost done. Lets denote your given integral as



                $$I=int e^{2x}sin(3x)dx$$



                Lets take a closer look at your final formula



                $$begin{align}
                I&=-frac{e^{2x}}3cos(3x)+frac23left(frac{e^{2x}}3sin(3x)-frac23underbrace{int e^{2x}sin(3x)dx}_{=I}right)\
                I&=-frac{e^{2x}}3cos(3x)+frac23left(frac{e^{2x}}3sin(3x)-frac23Iright)\
                I&=-frac{e^{2x}}3cos(3x)+frac29e^{2x}sin(3x)-frac49I\
                Leftrightarrow I+frac49I&=e^{2x}left(frac29sin(3x)-frac13cos(3x)right)\
                I&=frac9{13}e^{2x}left(frac29sin(3x)-frac13cos(3x)right)\
                I&=frac{e^{2x}}{13}left(2sin(3x)-3cos(3x)right)+c
                end{align}$$



                Note that this can be done in a more general way for in order to integrate the function $e^{ax}sin(bx)$ which turns out to equal



                $$int e^{ax}sin(bx)dx=frac{e^{ax}}{a^2+b^2}(asin(bx)-bcos(bx))+c$$






                share|cite|improve this answer












                You are almost done. Lets denote your given integral as



                $$I=int e^{2x}sin(3x)dx$$



                Lets take a closer look at your final formula



                $$begin{align}
                I&=-frac{e^{2x}}3cos(3x)+frac23left(frac{e^{2x}}3sin(3x)-frac23underbrace{int e^{2x}sin(3x)dx}_{=I}right)\
                I&=-frac{e^{2x}}3cos(3x)+frac23left(frac{e^{2x}}3sin(3x)-frac23Iright)\
                I&=-frac{e^{2x}}3cos(3x)+frac29e^{2x}sin(3x)-frac49I\
                Leftrightarrow I+frac49I&=e^{2x}left(frac29sin(3x)-frac13cos(3x)right)\
                I&=frac9{13}e^{2x}left(frac29sin(3x)-frac13cos(3x)right)\
                I&=frac{e^{2x}}{13}left(2sin(3x)-3cos(3x)right)+c
                end{align}$$



                Note that this can be done in a more general way for in order to integrate the function $e^{ax}sin(bx)$ which turns out to equal



                $$int e^{ax}sin(bx)dx=frac{e^{ax}}{a^2+b^2}(asin(bx)-bcos(bx))+c$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 24 at 18:17









                mrtaurho

                3,41121032




                3,41121032























                    4














                    You almost have it! Put



                    $$I:=int e^{2x}sin 3x,dx$$



                    and now take your last line:



                    $$I=-frac{e^{2x}}{3}cos3x + frac{2}{3}left(frac{e^{2x}}{3}sin3x -frac{2}{3}int e^{2x}sin3x,dxright)=frac{e^{2x}}{3}cos3x + frac{2}{9}e^{2x}sin3x -color{red}{frac{4}{9}int e^{2x}sin3x}implies$$



                    $$impliesfrac{13}9I=frac{e^{2x}}{3}cos3x + frac{2}{9}e^{2x}sin3x$$



                    and now end the exercise.






                    share|cite|improve this answer




























                      4














                      You almost have it! Put



                      $$I:=int e^{2x}sin 3x,dx$$



                      and now take your last line:



                      $$I=-frac{e^{2x}}{3}cos3x + frac{2}{3}left(frac{e^{2x}}{3}sin3x -frac{2}{3}int e^{2x}sin3x,dxright)=frac{e^{2x}}{3}cos3x + frac{2}{9}e^{2x}sin3x -color{red}{frac{4}{9}int e^{2x}sin3x}implies$$



                      $$impliesfrac{13}9I=frac{e^{2x}}{3}cos3x + frac{2}{9}e^{2x}sin3x$$



                      and now end the exercise.






                      share|cite|improve this answer


























                        4












                        4








                        4






                        You almost have it! Put



                        $$I:=int e^{2x}sin 3x,dx$$



                        and now take your last line:



                        $$I=-frac{e^{2x}}{3}cos3x + frac{2}{3}left(frac{e^{2x}}{3}sin3x -frac{2}{3}int e^{2x}sin3x,dxright)=frac{e^{2x}}{3}cos3x + frac{2}{9}e^{2x}sin3x -color{red}{frac{4}{9}int e^{2x}sin3x}implies$$



                        $$impliesfrac{13}9I=frac{e^{2x}}{3}cos3x + frac{2}{9}e^{2x}sin3x$$



                        and now end the exercise.






                        share|cite|improve this answer














                        You almost have it! Put



                        $$I:=int e^{2x}sin 3x,dx$$



                        and now take your last line:



                        $$I=-frac{e^{2x}}{3}cos3x + frac{2}{3}left(frac{e^{2x}}{3}sin3x -frac{2}{3}int e^{2x}sin3x,dxright)=frac{e^{2x}}{3}cos3x + frac{2}{9}e^{2x}sin3x -color{red}{frac{4}{9}int e^{2x}sin3x}implies$$



                        $$impliesfrac{13}9I=frac{e^{2x}}{3}cos3x + frac{2}{9}e^{2x}sin3x$$



                        and now end the exercise.







                        share|cite|improve this answer














                        share|cite|improve this answer



                        share|cite|improve this answer








                        edited Nov 24 at 18:53

























                        answered Nov 24 at 18:14









                        DonAntonio

                        176k1491225




                        176k1491225























                            2














                            $displaystyle I=int(e^{2x}sin3x)dx=dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}+intdfrac{9e^{2x}(-sin3x)dx}{4}$



                            $=dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}-dfrac{9I}{4}$



                            $I=dfrac{4}{13}left(dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}right)+C$



                            (Note: The result of indefinite integral is not unique.)






                            share|cite|improve this answer


























                              2














                              $displaystyle I=int(e^{2x}sin3x)dx=dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}+intdfrac{9e^{2x}(-sin3x)dx}{4}$



                              $=dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}-dfrac{9I}{4}$



                              $I=dfrac{4}{13}left(dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}right)+C$



                              (Note: The result of indefinite integral is not unique.)






                              share|cite|improve this answer
























                                2












                                2








                                2






                                $displaystyle I=int(e^{2x}sin3x)dx=dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}+intdfrac{9e^{2x}(-sin3x)dx}{4}$



                                $=dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}-dfrac{9I}{4}$



                                $I=dfrac{4}{13}left(dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}right)+C$



                                (Note: The result of indefinite integral is not unique.)






                                share|cite|improve this answer












                                $displaystyle I=int(e^{2x}sin3x)dx=dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}+intdfrac{9e^{2x}(-sin3x)dx}{4}$



                                $=dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}-dfrac{9I}{4}$



                                $I=dfrac{4}{13}left(dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}right)+C$



                                (Note: The result of indefinite integral is not unique.)







                                share|cite|improve this answer












                                share|cite|improve this answer



                                share|cite|improve this answer










                                answered Nov 24 at 18:17









                                Yadati Kiran

                                1,692619




                                1,692619























                                    0














                                    $$I=int e^{ax}sin bx mathrm{d}x$$
                                    $$mathrm{d}v=sin bx mathrm{d}xRightarrow v=-frac1bcos bx\u=e^{ax}Rightarrow mathrm{d}u=ae^{ax}mathrm{d}x$$
                                    $$I=-frac{e^{ax}}bcos bx+frac abint e^{ax}cos bx mathrm{d}x$$
                                    $$mathrm{d}v=cos bx mathrm{d}xRightarrow v=frac1bsin bx\u=e^{ax}Rightarrow mathrm{d}u=ae^{ax}mathrm{d}x$$
                                    $$I=-frac{e^{ax}}bcos bx+frac abbigg(frac{e^{ax}}{b}sin bx-frac abint e^{ax}sin bx mathrm{d}xbigg)$$
                                    $$I=-frac{e^{ax}}bcos bx+frac{ae^{ax}}{b^2}sin bx-frac{a^2}{b^2}I$$
                                    $$bigg(1+frac{a^2}{b^2}bigg)I=frac{e^{ax}}bbigg(frac absin bx-cos bxbigg)$$
                                    $$I=frac{b^2}{a^2+b^2}frac{e^{ax}}bbigg(frac absin bx-cos bxbigg)$$
                                    $$I=frac{e^{ax}}{a^2+b^2}big(asin bx-bcos bxbig)+C$$






                                    share|cite|improve this answer


























                                      0














                                      $$I=int e^{ax}sin bx mathrm{d}x$$
                                      $$mathrm{d}v=sin bx mathrm{d}xRightarrow v=-frac1bcos bx\u=e^{ax}Rightarrow mathrm{d}u=ae^{ax}mathrm{d}x$$
                                      $$I=-frac{e^{ax}}bcos bx+frac abint e^{ax}cos bx mathrm{d}x$$
                                      $$mathrm{d}v=cos bx mathrm{d}xRightarrow v=frac1bsin bx\u=e^{ax}Rightarrow mathrm{d}u=ae^{ax}mathrm{d}x$$
                                      $$I=-frac{e^{ax}}bcos bx+frac abbigg(frac{e^{ax}}{b}sin bx-frac abint e^{ax}sin bx mathrm{d}xbigg)$$
                                      $$I=-frac{e^{ax}}bcos bx+frac{ae^{ax}}{b^2}sin bx-frac{a^2}{b^2}I$$
                                      $$bigg(1+frac{a^2}{b^2}bigg)I=frac{e^{ax}}bbigg(frac absin bx-cos bxbigg)$$
                                      $$I=frac{b^2}{a^2+b^2}frac{e^{ax}}bbigg(frac absin bx-cos bxbigg)$$
                                      $$I=frac{e^{ax}}{a^2+b^2}big(asin bx-bcos bxbig)+C$$






                                      share|cite|improve this answer
























                                        0












                                        0








                                        0






                                        $$I=int e^{ax}sin bx mathrm{d}x$$
                                        $$mathrm{d}v=sin bx mathrm{d}xRightarrow v=-frac1bcos bx\u=e^{ax}Rightarrow mathrm{d}u=ae^{ax}mathrm{d}x$$
                                        $$I=-frac{e^{ax}}bcos bx+frac abint e^{ax}cos bx mathrm{d}x$$
                                        $$mathrm{d}v=cos bx mathrm{d}xRightarrow v=frac1bsin bx\u=e^{ax}Rightarrow mathrm{d}u=ae^{ax}mathrm{d}x$$
                                        $$I=-frac{e^{ax}}bcos bx+frac abbigg(frac{e^{ax}}{b}sin bx-frac abint e^{ax}sin bx mathrm{d}xbigg)$$
                                        $$I=-frac{e^{ax}}bcos bx+frac{ae^{ax}}{b^2}sin bx-frac{a^2}{b^2}I$$
                                        $$bigg(1+frac{a^2}{b^2}bigg)I=frac{e^{ax}}bbigg(frac absin bx-cos bxbigg)$$
                                        $$I=frac{b^2}{a^2+b^2}frac{e^{ax}}bbigg(frac absin bx-cos bxbigg)$$
                                        $$I=frac{e^{ax}}{a^2+b^2}big(asin bx-bcos bxbig)+C$$






                                        share|cite|improve this answer












                                        $$I=int e^{ax}sin bx mathrm{d}x$$
                                        $$mathrm{d}v=sin bx mathrm{d}xRightarrow v=-frac1bcos bx\u=e^{ax}Rightarrow mathrm{d}u=ae^{ax}mathrm{d}x$$
                                        $$I=-frac{e^{ax}}bcos bx+frac abint e^{ax}cos bx mathrm{d}x$$
                                        $$mathrm{d}v=cos bx mathrm{d}xRightarrow v=frac1bsin bx\u=e^{ax}Rightarrow mathrm{d}u=ae^{ax}mathrm{d}x$$
                                        $$I=-frac{e^{ax}}bcos bx+frac abbigg(frac{e^{ax}}{b}sin bx-frac abint e^{ax}sin bx mathrm{d}xbigg)$$
                                        $$I=-frac{e^{ax}}bcos bx+frac{ae^{ax}}{b^2}sin bx-frac{a^2}{b^2}I$$
                                        $$bigg(1+frac{a^2}{b^2}bigg)I=frac{e^{ax}}bbigg(frac absin bx-cos bxbigg)$$
                                        $$I=frac{b^2}{a^2+b^2}frac{e^{ax}}bbigg(frac absin bx-cos bxbigg)$$
                                        $$I=frac{e^{ax}}{a^2+b^2}big(asin bx-bcos bxbig)+C$$







                                        share|cite|improve this answer












                                        share|cite|improve this answer



                                        share|cite|improve this answer










                                        answered Nov 24 at 19:35









                                        clathratus

                                        3,052330




                                        3,052330























                                            0














                                            how about this:
                                            $$I=int e^{2x}sin(3x)dx=frac{-e^{2x}cos(3x)}{3}+intfrac{2cos(3x)e^{2x}}{3}dx$$
                                            $$=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}-intfrac{4sin(3x)e^{2x}}{9}dx$$
                                            $$I=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}-frac{4}{9}I$$
                                            so:
                                            $$frac{13}{9}I=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}$$






                                            share|cite|improve this answer


























                                              0














                                              how about this:
                                              $$I=int e^{2x}sin(3x)dx=frac{-e^{2x}cos(3x)}{3}+intfrac{2cos(3x)e^{2x}}{3}dx$$
                                              $$=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}-intfrac{4sin(3x)e^{2x}}{9}dx$$
                                              $$I=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}-frac{4}{9}I$$
                                              so:
                                              $$frac{13}{9}I=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}$$






                                              share|cite|improve this answer
























                                                0












                                                0








                                                0






                                                how about this:
                                                $$I=int e^{2x}sin(3x)dx=frac{-e^{2x}cos(3x)}{3}+intfrac{2cos(3x)e^{2x}}{3}dx$$
                                                $$=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}-intfrac{4sin(3x)e^{2x}}{9}dx$$
                                                $$I=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}-frac{4}{9}I$$
                                                so:
                                                $$frac{13}{9}I=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}$$






                                                share|cite|improve this answer












                                                how about this:
                                                $$I=int e^{2x}sin(3x)dx=frac{-e^{2x}cos(3x)}{3}+intfrac{2cos(3x)e^{2x}}{3}dx$$
                                                $$=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}-intfrac{4sin(3x)e^{2x}}{9}dx$$
                                                $$I=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}-frac{4}{9}I$$
                                                so:
                                                $$frac{13}{9}I=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}$$







                                                share|cite|improve this answer












                                                share|cite|improve this answer



                                                share|cite|improve this answer










                                                answered Nov 24 at 22:48









                                                Henry Lee

                                                1,703218




                                                1,703218






























                                                    draft saved

                                                    draft discarded




















































                                                    Thanks for contributing an answer to Mathematics Stack Exchange!


                                                    • Please be sure to answer the question. Provide details and share your research!

                                                    But avoid



                                                    • Asking for help, clarification, or responding to other answers.

                                                    • Making statements based on opinion; back them up with references or personal experience.


                                                    Use MathJax to format equations. MathJax reference.


                                                    To learn more, see our tips on writing great answers.





                                                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                                    Please pay close attention to the following guidance:


                                                    • Please be sure to answer the question. Provide details and share your research!

                                                    But avoid



                                                    • Asking for help, clarification, or responding to other answers.

                                                    • Making statements based on opinion; back them up with references or personal experience.


                                                    To learn more, see our tips on writing great answers.




                                                    draft saved


                                                    draft discarded














                                                    StackExchange.ready(
                                                    function () {
                                                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011872%2fhow-to-integrate-int-e2x-sin3xdx-by-parts%23new-answer', 'question_page');
                                                    }
                                                    );

                                                    Post as a guest















                                                    Required, but never shown





















































                                                    Required, but never shown














                                                    Required, but never shown












                                                    Required, but never shown







                                                    Required, but never shown

































                                                    Required, but never shown














                                                    Required, but never shown












                                                    Required, but never shown







                                                    Required, but never shown







                                                    Popular posts from this blog

                                                    Plaza Victoria

                                                    Puebla de Zaragoza

                                                    Musa