How to integrate $int e^{2x}sin(3x)dx$ by parts?
$$int e^{2x}sin(3x)dx$$
First I set $u = e^{2x}, v' = cos(3x)$
to get:
$$int e^{2x}sin(3x)dx = -frac{e^{3x}}{3}cos(3x) + frac{2}{3}int e^{2x}cos(3x)dx$$
Applying integration by parts again yields:
$$-frac{e^{2x}}{3}cos(3x) + frac{2}{3}left(frac{e^{2x}}{3}sin(3x) -frac{2}{3}int e^{2x}sin(3x)dxright)$$
And it just keeps going on and on and I'm stuck. How can I solve this?
integration
add a comment |
$$int e^{2x}sin(3x)dx$$
First I set $u = e^{2x}, v' = cos(3x)$
to get:
$$int e^{2x}sin(3x)dx = -frac{e^{3x}}{3}cos(3x) + frac{2}{3}int e^{2x}cos(3x)dx$$
Applying integration by parts again yields:
$$-frac{e^{2x}}{3}cos(3x) + frac{2}{3}left(frac{e^{2x}}{3}sin(3x) -frac{2}{3}int e^{2x}sin(3x)dxright)$$
And it just keeps going on and on and I'm stuck. How can I solve this?
integration
1
Remember, the expression you wrote is equal to your original integral. Try to add your similar integral on the right to the one on the left!
– Zach
Nov 24 at 18:15
add a comment |
$$int e^{2x}sin(3x)dx$$
First I set $u = e^{2x}, v' = cos(3x)$
to get:
$$int e^{2x}sin(3x)dx = -frac{e^{3x}}{3}cos(3x) + frac{2}{3}int e^{2x}cos(3x)dx$$
Applying integration by parts again yields:
$$-frac{e^{2x}}{3}cos(3x) + frac{2}{3}left(frac{e^{2x}}{3}sin(3x) -frac{2}{3}int e^{2x}sin(3x)dxright)$$
And it just keeps going on and on and I'm stuck. How can I solve this?
integration
$$int e^{2x}sin(3x)dx$$
First I set $u = e^{2x}, v' = cos(3x)$
to get:
$$int e^{2x}sin(3x)dx = -frac{e^{3x}}{3}cos(3x) + frac{2}{3}int e^{2x}cos(3x)dx$$
Applying integration by parts again yields:
$$-frac{e^{2x}}{3}cos(3x) + frac{2}{3}left(frac{e^{2x}}{3}sin(3x) -frac{2}{3}int e^{2x}sin(3x)dxright)$$
And it just keeps going on and on and I'm stuck. How can I solve this?
integration
integration
edited Nov 24 at 18:19
mrtaurho
3,41121032
3,41121032
asked Nov 24 at 18:08
Trey
304113
304113
1
Remember, the expression you wrote is equal to your original integral. Try to add your similar integral on the right to the one on the left!
– Zach
Nov 24 at 18:15
add a comment |
1
Remember, the expression you wrote is equal to your original integral. Try to add your similar integral on the right to the one on the left!
– Zach
Nov 24 at 18:15
1
1
Remember, the expression you wrote is equal to your original integral. Try to add your similar integral on the right to the one on the left!
– Zach
Nov 24 at 18:15
Remember, the expression you wrote is equal to your original integral. Try to add your similar integral on the right to the one on the left!
– Zach
Nov 24 at 18:15
add a comment |
5 Answers
5
active
oldest
votes
You are almost done. Lets denote your given integral as
$$I=int e^{2x}sin(3x)dx$$
Lets take a closer look at your final formula
$$begin{align}
I&=-frac{e^{2x}}3cos(3x)+frac23left(frac{e^{2x}}3sin(3x)-frac23underbrace{int e^{2x}sin(3x)dx}_{=I}right)\
I&=-frac{e^{2x}}3cos(3x)+frac23left(frac{e^{2x}}3sin(3x)-frac23Iright)\
I&=-frac{e^{2x}}3cos(3x)+frac29e^{2x}sin(3x)-frac49I\
Leftrightarrow I+frac49I&=e^{2x}left(frac29sin(3x)-frac13cos(3x)right)\
I&=frac9{13}e^{2x}left(frac29sin(3x)-frac13cos(3x)right)\
I&=frac{e^{2x}}{13}left(2sin(3x)-3cos(3x)right)+c
end{align}$$
Note that this can be done in a more general way for in order to integrate the function $e^{ax}sin(bx)$ which turns out to equal
$$int e^{ax}sin(bx)dx=frac{e^{ax}}{a^2+b^2}(asin(bx)-bcos(bx))+c$$
add a comment |
You almost have it! Put
$$I:=int e^{2x}sin 3x,dx$$
and now take your last line:
$$I=-frac{e^{2x}}{3}cos3x + frac{2}{3}left(frac{e^{2x}}{3}sin3x -frac{2}{3}int e^{2x}sin3x,dxright)=frac{e^{2x}}{3}cos3x + frac{2}{9}e^{2x}sin3x -color{red}{frac{4}{9}int e^{2x}sin3x}implies$$
$$impliesfrac{13}9I=frac{e^{2x}}{3}cos3x + frac{2}{9}e^{2x}sin3x$$
and now end the exercise.
add a comment |
$displaystyle I=int(e^{2x}sin3x)dx=dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}+intdfrac{9e^{2x}(-sin3x)dx}{4}$
$=dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}-dfrac{9I}{4}$
$I=dfrac{4}{13}left(dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}right)+C$
(Note: The result of indefinite integral is not unique.)
add a comment |
$$I=int e^{ax}sin bx mathrm{d}x$$
$$mathrm{d}v=sin bx mathrm{d}xRightarrow v=-frac1bcos bx\u=e^{ax}Rightarrow mathrm{d}u=ae^{ax}mathrm{d}x$$
$$I=-frac{e^{ax}}bcos bx+frac abint e^{ax}cos bx mathrm{d}x$$
$$mathrm{d}v=cos bx mathrm{d}xRightarrow v=frac1bsin bx\u=e^{ax}Rightarrow mathrm{d}u=ae^{ax}mathrm{d}x$$
$$I=-frac{e^{ax}}bcos bx+frac abbigg(frac{e^{ax}}{b}sin bx-frac abint e^{ax}sin bx mathrm{d}xbigg)$$
$$I=-frac{e^{ax}}bcos bx+frac{ae^{ax}}{b^2}sin bx-frac{a^2}{b^2}I$$
$$bigg(1+frac{a^2}{b^2}bigg)I=frac{e^{ax}}bbigg(frac absin bx-cos bxbigg)$$
$$I=frac{b^2}{a^2+b^2}frac{e^{ax}}bbigg(frac absin bx-cos bxbigg)$$
$$I=frac{e^{ax}}{a^2+b^2}big(asin bx-bcos bxbig)+C$$
add a comment |
how about this:
$$I=int e^{2x}sin(3x)dx=frac{-e^{2x}cos(3x)}{3}+intfrac{2cos(3x)e^{2x}}{3}dx$$
$$=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}-intfrac{4sin(3x)e^{2x}}{9}dx$$
$$I=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}-frac{4}{9}I$$
so:
$$frac{13}{9}I=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011872%2fhow-to-integrate-int-e2x-sin3xdx-by-parts%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
You are almost done. Lets denote your given integral as
$$I=int e^{2x}sin(3x)dx$$
Lets take a closer look at your final formula
$$begin{align}
I&=-frac{e^{2x}}3cos(3x)+frac23left(frac{e^{2x}}3sin(3x)-frac23underbrace{int e^{2x}sin(3x)dx}_{=I}right)\
I&=-frac{e^{2x}}3cos(3x)+frac23left(frac{e^{2x}}3sin(3x)-frac23Iright)\
I&=-frac{e^{2x}}3cos(3x)+frac29e^{2x}sin(3x)-frac49I\
Leftrightarrow I+frac49I&=e^{2x}left(frac29sin(3x)-frac13cos(3x)right)\
I&=frac9{13}e^{2x}left(frac29sin(3x)-frac13cos(3x)right)\
I&=frac{e^{2x}}{13}left(2sin(3x)-3cos(3x)right)+c
end{align}$$
Note that this can be done in a more general way for in order to integrate the function $e^{ax}sin(bx)$ which turns out to equal
$$int e^{ax}sin(bx)dx=frac{e^{ax}}{a^2+b^2}(asin(bx)-bcos(bx))+c$$
add a comment |
You are almost done. Lets denote your given integral as
$$I=int e^{2x}sin(3x)dx$$
Lets take a closer look at your final formula
$$begin{align}
I&=-frac{e^{2x}}3cos(3x)+frac23left(frac{e^{2x}}3sin(3x)-frac23underbrace{int e^{2x}sin(3x)dx}_{=I}right)\
I&=-frac{e^{2x}}3cos(3x)+frac23left(frac{e^{2x}}3sin(3x)-frac23Iright)\
I&=-frac{e^{2x}}3cos(3x)+frac29e^{2x}sin(3x)-frac49I\
Leftrightarrow I+frac49I&=e^{2x}left(frac29sin(3x)-frac13cos(3x)right)\
I&=frac9{13}e^{2x}left(frac29sin(3x)-frac13cos(3x)right)\
I&=frac{e^{2x}}{13}left(2sin(3x)-3cos(3x)right)+c
end{align}$$
Note that this can be done in a more general way for in order to integrate the function $e^{ax}sin(bx)$ which turns out to equal
$$int e^{ax}sin(bx)dx=frac{e^{ax}}{a^2+b^2}(asin(bx)-bcos(bx))+c$$
add a comment |
You are almost done. Lets denote your given integral as
$$I=int e^{2x}sin(3x)dx$$
Lets take a closer look at your final formula
$$begin{align}
I&=-frac{e^{2x}}3cos(3x)+frac23left(frac{e^{2x}}3sin(3x)-frac23underbrace{int e^{2x}sin(3x)dx}_{=I}right)\
I&=-frac{e^{2x}}3cos(3x)+frac23left(frac{e^{2x}}3sin(3x)-frac23Iright)\
I&=-frac{e^{2x}}3cos(3x)+frac29e^{2x}sin(3x)-frac49I\
Leftrightarrow I+frac49I&=e^{2x}left(frac29sin(3x)-frac13cos(3x)right)\
I&=frac9{13}e^{2x}left(frac29sin(3x)-frac13cos(3x)right)\
I&=frac{e^{2x}}{13}left(2sin(3x)-3cos(3x)right)+c
end{align}$$
Note that this can be done in a more general way for in order to integrate the function $e^{ax}sin(bx)$ which turns out to equal
$$int e^{ax}sin(bx)dx=frac{e^{ax}}{a^2+b^2}(asin(bx)-bcos(bx))+c$$
You are almost done. Lets denote your given integral as
$$I=int e^{2x}sin(3x)dx$$
Lets take a closer look at your final formula
$$begin{align}
I&=-frac{e^{2x}}3cos(3x)+frac23left(frac{e^{2x}}3sin(3x)-frac23underbrace{int e^{2x}sin(3x)dx}_{=I}right)\
I&=-frac{e^{2x}}3cos(3x)+frac23left(frac{e^{2x}}3sin(3x)-frac23Iright)\
I&=-frac{e^{2x}}3cos(3x)+frac29e^{2x}sin(3x)-frac49I\
Leftrightarrow I+frac49I&=e^{2x}left(frac29sin(3x)-frac13cos(3x)right)\
I&=frac9{13}e^{2x}left(frac29sin(3x)-frac13cos(3x)right)\
I&=frac{e^{2x}}{13}left(2sin(3x)-3cos(3x)right)+c
end{align}$$
Note that this can be done in a more general way for in order to integrate the function $e^{ax}sin(bx)$ which turns out to equal
$$int e^{ax}sin(bx)dx=frac{e^{ax}}{a^2+b^2}(asin(bx)-bcos(bx))+c$$
answered Nov 24 at 18:17
mrtaurho
3,41121032
3,41121032
add a comment |
add a comment |
You almost have it! Put
$$I:=int e^{2x}sin 3x,dx$$
and now take your last line:
$$I=-frac{e^{2x}}{3}cos3x + frac{2}{3}left(frac{e^{2x}}{3}sin3x -frac{2}{3}int e^{2x}sin3x,dxright)=frac{e^{2x}}{3}cos3x + frac{2}{9}e^{2x}sin3x -color{red}{frac{4}{9}int e^{2x}sin3x}implies$$
$$impliesfrac{13}9I=frac{e^{2x}}{3}cos3x + frac{2}{9}e^{2x}sin3x$$
and now end the exercise.
add a comment |
You almost have it! Put
$$I:=int e^{2x}sin 3x,dx$$
and now take your last line:
$$I=-frac{e^{2x}}{3}cos3x + frac{2}{3}left(frac{e^{2x}}{3}sin3x -frac{2}{3}int e^{2x}sin3x,dxright)=frac{e^{2x}}{3}cos3x + frac{2}{9}e^{2x}sin3x -color{red}{frac{4}{9}int e^{2x}sin3x}implies$$
$$impliesfrac{13}9I=frac{e^{2x}}{3}cos3x + frac{2}{9}e^{2x}sin3x$$
and now end the exercise.
add a comment |
You almost have it! Put
$$I:=int e^{2x}sin 3x,dx$$
and now take your last line:
$$I=-frac{e^{2x}}{3}cos3x + frac{2}{3}left(frac{e^{2x}}{3}sin3x -frac{2}{3}int e^{2x}sin3x,dxright)=frac{e^{2x}}{3}cos3x + frac{2}{9}e^{2x}sin3x -color{red}{frac{4}{9}int e^{2x}sin3x}implies$$
$$impliesfrac{13}9I=frac{e^{2x}}{3}cos3x + frac{2}{9}e^{2x}sin3x$$
and now end the exercise.
You almost have it! Put
$$I:=int e^{2x}sin 3x,dx$$
and now take your last line:
$$I=-frac{e^{2x}}{3}cos3x + frac{2}{3}left(frac{e^{2x}}{3}sin3x -frac{2}{3}int e^{2x}sin3x,dxright)=frac{e^{2x}}{3}cos3x + frac{2}{9}e^{2x}sin3x -color{red}{frac{4}{9}int e^{2x}sin3x}implies$$
$$impliesfrac{13}9I=frac{e^{2x}}{3}cos3x + frac{2}{9}e^{2x}sin3x$$
and now end the exercise.
edited Nov 24 at 18:53
answered Nov 24 at 18:14
DonAntonio
176k1491225
176k1491225
add a comment |
add a comment |
$displaystyle I=int(e^{2x}sin3x)dx=dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}+intdfrac{9e^{2x}(-sin3x)dx}{4}$
$=dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}-dfrac{9I}{4}$
$I=dfrac{4}{13}left(dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}right)+C$
(Note: The result of indefinite integral is not unique.)
add a comment |
$displaystyle I=int(e^{2x}sin3x)dx=dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}+intdfrac{9e^{2x}(-sin3x)dx}{4}$
$=dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}-dfrac{9I}{4}$
$I=dfrac{4}{13}left(dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}right)+C$
(Note: The result of indefinite integral is not unique.)
add a comment |
$displaystyle I=int(e^{2x}sin3x)dx=dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}+intdfrac{9e^{2x}(-sin3x)dx}{4}$
$=dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}-dfrac{9I}{4}$
$I=dfrac{4}{13}left(dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}right)+C$
(Note: The result of indefinite integral is not unique.)
$displaystyle I=int(e^{2x}sin3x)dx=dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}+intdfrac{9e^{2x}(-sin3x)dx}{4}$
$=dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}-dfrac{9I}{4}$
$I=dfrac{4}{13}left(dfrac{e^{2x}sin 3x}{2}-dfrac{3e^{2x}cos3x}{4}right)+C$
(Note: The result of indefinite integral is not unique.)
answered Nov 24 at 18:17
Yadati Kiran
1,692619
1,692619
add a comment |
add a comment |
$$I=int e^{ax}sin bx mathrm{d}x$$
$$mathrm{d}v=sin bx mathrm{d}xRightarrow v=-frac1bcos bx\u=e^{ax}Rightarrow mathrm{d}u=ae^{ax}mathrm{d}x$$
$$I=-frac{e^{ax}}bcos bx+frac abint e^{ax}cos bx mathrm{d}x$$
$$mathrm{d}v=cos bx mathrm{d}xRightarrow v=frac1bsin bx\u=e^{ax}Rightarrow mathrm{d}u=ae^{ax}mathrm{d}x$$
$$I=-frac{e^{ax}}bcos bx+frac abbigg(frac{e^{ax}}{b}sin bx-frac abint e^{ax}sin bx mathrm{d}xbigg)$$
$$I=-frac{e^{ax}}bcos bx+frac{ae^{ax}}{b^2}sin bx-frac{a^2}{b^2}I$$
$$bigg(1+frac{a^2}{b^2}bigg)I=frac{e^{ax}}bbigg(frac absin bx-cos bxbigg)$$
$$I=frac{b^2}{a^2+b^2}frac{e^{ax}}bbigg(frac absin bx-cos bxbigg)$$
$$I=frac{e^{ax}}{a^2+b^2}big(asin bx-bcos bxbig)+C$$
add a comment |
$$I=int e^{ax}sin bx mathrm{d}x$$
$$mathrm{d}v=sin bx mathrm{d}xRightarrow v=-frac1bcos bx\u=e^{ax}Rightarrow mathrm{d}u=ae^{ax}mathrm{d}x$$
$$I=-frac{e^{ax}}bcos bx+frac abint e^{ax}cos bx mathrm{d}x$$
$$mathrm{d}v=cos bx mathrm{d}xRightarrow v=frac1bsin bx\u=e^{ax}Rightarrow mathrm{d}u=ae^{ax}mathrm{d}x$$
$$I=-frac{e^{ax}}bcos bx+frac abbigg(frac{e^{ax}}{b}sin bx-frac abint e^{ax}sin bx mathrm{d}xbigg)$$
$$I=-frac{e^{ax}}bcos bx+frac{ae^{ax}}{b^2}sin bx-frac{a^2}{b^2}I$$
$$bigg(1+frac{a^2}{b^2}bigg)I=frac{e^{ax}}bbigg(frac absin bx-cos bxbigg)$$
$$I=frac{b^2}{a^2+b^2}frac{e^{ax}}bbigg(frac absin bx-cos bxbigg)$$
$$I=frac{e^{ax}}{a^2+b^2}big(asin bx-bcos bxbig)+C$$
add a comment |
$$I=int e^{ax}sin bx mathrm{d}x$$
$$mathrm{d}v=sin bx mathrm{d}xRightarrow v=-frac1bcos bx\u=e^{ax}Rightarrow mathrm{d}u=ae^{ax}mathrm{d}x$$
$$I=-frac{e^{ax}}bcos bx+frac abint e^{ax}cos bx mathrm{d}x$$
$$mathrm{d}v=cos bx mathrm{d}xRightarrow v=frac1bsin bx\u=e^{ax}Rightarrow mathrm{d}u=ae^{ax}mathrm{d}x$$
$$I=-frac{e^{ax}}bcos bx+frac abbigg(frac{e^{ax}}{b}sin bx-frac abint e^{ax}sin bx mathrm{d}xbigg)$$
$$I=-frac{e^{ax}}bcos bx+frac{ae^{ax}}{b^2}sin bx-frac{a^2}{b^2}I$$
$$bigg(1+frac{a^2}{b^2}bigg)I=frac{e^{ax}}bbigg(frac absin bx-cos bxbigg)$$
$$I=frac{b^2}{a^2+b^2}frac{e^{ax}}bbigg(frac absin bx-cos bxbigg)$$
$$I=frac{e^{ax}}{a^2+b^2}big(asin bx-bcos bxbig)+C$$
$$I=int e^{ax}sin bx mathrm{d}x$$
$$mathrm{d}v=sin bx mathrm{d}xRightarrow v=-frac1bcos bx\u=e^{ax}Rightarrow mathrm{d}u=ae^{ax}mathrm{d}x$$
$$I=-frac{e^{ax}}bcos bx+frac abint e^{ax}cos bx mathrm{d}x$$
$$mathrm{d}v=cos bx mathrm{d}xRightarrow v=frac1bsin bx\u=e^{ax}Rightarrow mathrm{d}u=ae^{ax}mathrm{d}x$$
$$I=-frac{e^{ax}}bcos bx+frac abbigg(frac{e^{ax}}{b}sin bx-frac abint e^{ax}sin bx mathrm{d}xbigg)$$
$$I=-frac{e^{ax}}bcos bx+frac{ae^{ax}}{b^2}sin bx-frac{a^2}{b^2}I$$
$$bigg(1+frac{a^2}{b^2}bigg)I=frac{e^{ax}}bbigg(frac absin bx-cos bxbigg)$$
$$I=frac{b^2}{a^2+b^2}frac{e^{ax}}bbigg(frac absin bx-cos bxbigg)$$
$$I=frac{e^{ax}}{a^2+b^2}big(asin bx-bcos bxbig)+C$$
answered Nov 24 at 19:35
clathratus
3,052330
3,052330
add a comment |
add a comment |
how about this:
$$I=int e^{2x}sin(3x)dx=frac{-e^{2x}cos(3x)}{3}+intfrac{2cos(3x)e^{2x}}{3}dx$$
$$=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}-intfrac{4sin(3x)e^{2x}}{9}dx$$
$$I=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}-frac{4}{9}I$$
so:
$$frac{13}{9}I=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}$$
add a comment |
how about this:
$$I=int e^{2x}sin(3x)dx=frac{-e^{2x}cos(3x)}{3}+intfrac{2cos(3x)e^{2x}}{3}dx$$
$$=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}-intfrac{4sin(3x)e^{2x}}{9}dx$$
$$I=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}-frac{4}{9}I$$
so:
$$frac{13}{9}I=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}$$
add a comment |
how about this:
$$I=int e^{2x}sin(3x)dx=frac{-e^{2x}cos(3x)}{3}+intfrac{2cos(3x)e^{2x}}{3}dx$$
$$=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}-intfrac{4sin(3x)e^{2x}}{9}dx$$
$$I=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}-frac{4}{9}I$$
so:
$$frac{13}{9}I=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}$$
how about this:
$$I=int e^{2x}sin(3x)dx=frac{-e^{2x}cos(3x)}{3}+intfrac{2cos(3x)e^{2x}}{3}dx$$
$$=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}-intfrac{4sin(3x)e^{2x}}{9}dx$$
$$I=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}-frac{4}{9}I$$
so:
$$frac{13}{9}I=frac{-e^{2x}cos(3x)}{3}+frac{2sin(3x)e^{2x}}{9}$$
answered Nov 24 at 22:48
Henry Lee
1,703218
1,703218
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011872%2fhow-to-integrate-int-e2x-sin3xdx-by-parts%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Remember, the expression you wrote is equal to your original integral. Try to add your similar integral on the right to the one on the left!
– Zach
Nov 24 at 18:15