A line integral involving $zeta(s)$
$begingroup$
Consider the line integral
$$I=int_{1/2 -iinfty}^{1/2 + iinfty} frac{log((s-1)zeta(s))}{s} mathrm{d}s-int_{1/2 -i infty}^{1/2 + iinfty} frac{iarg zeta (s)}{s}mathrm{d}s$$
where $zeta$ denotes the Riemann zeta function, using complex analysis (or otherwise). Note that $I$ exists (is well-defined) since $|zeta(s)|=o(|s|)$ for $Re(s)=1/2$.
Is the argument of https://arxiv.org/abs/1306.0856 (proofs of Theorem 1.2-1.3) applicable in evaluating $I$ ?
complex-analysis analytic-number-theory riemann-zeta
$endgroup$
add a comment |
$begingroup$
Consider the line integral
$$I=int_{1/2 -iinfty}^{1/2 + iinfty} frac{log((s-1)zeta(s))}{s} mathrm{d}s-int_{1/2 -i infty}^{1/2 + iinfty} frac{iarg zeta (s)}{s}mathrm{d}s$$
where $zeta$ denotes the Riemann zeta function, using complex analysis (or otherwise). Note that $I$ exists (is well-defined) since $|zeta(s)|=o(|s|)$ for $Re(s)=1/2$.
Is the argument of https://arxiv.org/abs/1306.0856 (proofs of Theorem 1.2-1.3) applicable in evaluating $I$ ?
complex-analysis analytic-number-theory riemann-zeta
$endgroup$
add a comment |
$begingroup$
Consider the line integral
$$I=int_{1/2 -iinfty}^{1/2 + iinfty} frac{log((s-1)zeta(s))}{s} mathrm{d}s-int_{1/2 -i infty}^{1/2 + iinfty} frac{iarg zeta (s)}{s}mathrm{d}s$$
where $zeta$ denotes the Riemann zeta function, using complex analysis (or otherwise). Note that $I$ exists (is well-defined) since $|zeta(s)|=o(|s|)$ for $Re(s)=1/2$.
Is the argument of https://arxiv.org/abs/1306.0856 (proofs of Theorem 1.2-1.3) applicable in evaluating $I$ ?
complex-analysis analytic-number-theory riemann-zeta
$endgroup$
Consider the line integral
$$I=int_{1/2 -iinfty}^{1/2 + iinfty} frac{log((s-1)zeta(s))}{s} mathrm{d}s-int_{1/2 -i infty}^{1/2 + iinfty} frac{iarg zeta (s)}{s}mathrm{d}s$$
where $zeta$ denotes the Riemann zeta function, using complex analysis (or otherwise). Note that $I$ exists (is well-defined) since $|zeta(s)|=o(|s|)$ for $Re(s)=1/2$.
Is the argument of https://arxiv.org/abs/1306.0856 (proofs of Theorem 1.2-1.3) applicable in evaluating $I$ ?
complex-analysis analytic-number-theory riemann-zeta
complex-analysis analytic-number-theory riemann-zeta
edited Dec 4 '18 at 2:07
asked Dec 3 '18 at 20:21
user507152
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
- Do you know the Cauchy integral theorem ? $$int_{1/2 -iinfty}^{1/2 + iinfty} frac{log(s-1)}{s^2} ds= lim_{ato 0}int_{C_a} frac{log(s-1)}{s^2} ds - int_{L_a} frac{log(s-1)}{s^2} ds$$
where $C_a$ is a closed-contour $1/2-iinfty to 1/2-ia to 1+a-ia to 1+a+iato 1/2+ia to 1/2+iinfty to infty +iinfty to infty-iinfty to 1/2-iinfty$ and $L_a$ is the portion $1/2-ia to 1+a-ia to 1+a+iato 1/2+ia$.
Since $frac{log(s-1)}{s^2}$ is analytic inside $S_a$ and decreases in $O(s^{-1-epsilon})$ then $int_{C_a} frac{log(s-1)}{s^2} ds = 0$ and since $log(s-1) mapsto log(s-1)+2ipi$ when rotating counterclockwise around $s-1$ then
$$lim_{ato 0}int_{L_a} frac{log(s-1)}{s^2} ds= int_1^{1/2} frac{2ipi}{s^2}ds$$
For $F$ analytic decreasing in $O(s^{-1-epsilon})$, assuming the implied branch of $log (zeta(s)(s-1))$ is $O(s^{c}), c < epsilon$ the same argument (with a contour excluding each non-trivial zero) gives
$$lim_{T to infty}int_{1/2 -iT}^{1/2 + iT} log(zeta(s)(s-1))F(s) ds = lim_{T to infty}sum_{rho = sigma+it, sigma > 1/2, |t| < T} int_{1/2+it}^{sigma+it} 2i pi F(s)ds$$
In your question, what branch of $log (zeta(s)(s-1))$ are you considering ?
Look at $$lim_{T to infty}int_{1/2 -iT}^{1/2 + iT} frac{log(zeta(s)(s-1))}{s^{1+1/T}} ds$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024610%2fa-line-integral-involving-zetas%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
- Do you know the Cauchy integral theorem ? $$int_{1/2 -iinfty}^{1/2 + iinfty} frac{log(s-1)}{s^2} ds= lim_{ato 0}int_{C_a} frac{log(s-1)}{s^2} ds - int_{L_a} frac{log(s-1)}{s^2} ds$$
where $C_a$ is a closed-contour $1/2-iinfty to 1/2-ia to 1+a-ia to 1+a+iato 1/2+ia to 1/2+iinfty to infty +iinfty to infty-iinfty to 1/2-iinfty$ and $L_a$ is the portion $1/2-ia to 1+a-ia to 1+a+iato 1/2+ia$.
Since $frac{log(s-1)}{s^2}$ is analytic inside $S_a$ and decreases in $O(s^{-1-epsilon})$ then $int_{C_a} frac{log(s-1)}{s^2} ds = 0$ and since $log(s-1) mapsto log(s-1)+2ipi$ when rotating counterclockwise around $s-1$ then
$$lim_{ato 0}int_{L_a} frac{log(s-1)}{s^2} ds= int_1^{1/2} frac{2ipi}{s^2}ds$$
For $F$ analytic decreasing in $O(s^{-1-epsilon})$, assuming the implied branch of $log (zeta(s)(s-1))$ is $O(s^{c}), c < epsilon$ the same argument (with a contour excluding each non-trivial zero) gives
$$lim_{T to infty}int_{1/2 -iT}^{1/2 + iT} log(zeta(s)(s-1))F(s) ds = lim_{T to infty}sum_{rho = sigma+it, sigma > 1/2, |t| < T} int_{1/2+it}^{sigma+it} 2i pi F(s)ds$$
In your question, what branch of $log (zeta(s)(s-1))$ are you considering ?
Look at $$lim_{T to infty}int_{1/2 -iT}^{1/2 + iT} frac{log(zeta(s)(s-1))}{s^{1+1/T}} ds$$
$endgroup$
add a comment |
$begingroup$
- Do you know the Cauchy integral theorem ? $$int_{1/2 -iinfty}^{1/2 + iinfty} frac{log(s-1)}{s^2} ds= lim_{ato 0}int_{C_a} frac{log(s-1)}{s^2} ds - int_{L_a} frac{log(s-1)}{s^2} ds$$
where $C_a$ is a closed-contour $1/2-iinfty to 1/2-ia to 1+a-ia to 1+a+iato 1/2+ia to 1/2+iinfty to infty +iinfty to infty-iinfty to 1/2-iinfty$ and $L_a$ is the portion $1/2-ia to 1+a-ia to 1+a+iato 1/2+ia$.
Since $frac{log(s-1)}{s^2}$ is analytic inside $S_a$ and decreases in $O(s^{-1-epsilon})$ then $int_{C_a} frac{log(s-1)}{s^2} ds = 0$ and since $log(s-1) mapsto log(s-1)+2ipi$ when rotating counterclockwise around $s-1$ then
$$lim_{ato 0}int_{L_a} frac{log(s-1)}{s^2} ds= int_1^{1/2} frac{2ipi}{s^2}ds$$
For $F$ analytic decreasing in $O(s^{-1-epsilon})$, assuming the implied branch of $log (zeta(s)(s-1))$ is $O(s^{c}), c < epsilon$ the same argument (with a contour excluding each non-trivial zero) gives
$$lim_{T to infty}int_{1/2 -iT}^{1/2 + iT} log(zeta(s)(s-1))F(s) ds = lim_{T to infty}sum_{rho = sigma+it, sigma > 1/2, |t| < T} int_{1/2+it}^{sigma+it} 2i pi F(s)ds$$
In your question, what branch of $log (zeta(s)(s-1))$ are you considering ?
Look at $$lim_{T to infty}int_{1/2 -iT}^{1/2 + iT} frac{log(zeta(s)(s-1))}{s^{1+1/T}} ds$$
$endgroup$
add a comment |
$begingroup$
- Do you know the Cauchy integral theorem ? $$int_{1/2 -iinfty}^{1/2 + iinfty} frac{log(s-1)}{s^2} ds= lim_{ato 0}int_{C_a} frac{log(s-1)}{s^2} ds - int_{L_a} frac{log(s-1)}{s^2} ds$$
where $C_a$ is a closed-contour $1/2-iinfty to 1/2-ia to 1+a-ia to 1+a+iato 1/2+ia to 1/2+iinfty to infty +iinfty to infty-iinfty to 1/2-iinfty$ and $L_a$ is the portion $1/2-ia to 1+a-ia to 1+a+iato 1/2+ia$.
Since $frac{log(s-1)}{s^2}$ is analytic inside $S_a$ and decreases in $O(s^{-1-epsilon})$ then $int_{C_a} frac{log(s-1)}{s^2} ds = 0$ and since $log(s-1) mapsto log(s-1)+2ipi$ when rotating counterclockwise around $s-1$ then
$$lim_{ato 0}int_{L_a} frac{log(s-1)}{s^2} ds= int_1^{1/2} frac{2ipi}{s^2}ds$$
For $F$ analytic decreasing in $O(s^{-1-epsilon})$, assuming the implied branch of $log (zeta(s)(s-1))$ is $O(s^{c}), c < epsilon$ the same argument (with a contour excluding each non-trivial zero) gives
$$lim_{T to infty}int_{1/2 -iT}^{1/2 + iT} log(zeta(s)(s-1))F(s) ds = lim_{T to infty}sum_{rho = sigma+it, sigma > 1/2, |t| < T} int_{1/2+it}^{sigma+it} 2i pi F(s)ds$$
In your question, what branch of $log (zeta(s)(s-1))$ are you considering ?
Look at $$lim_{T to infty}int_{1/2 -iT}^{1/2 + iT} frac{log(zeta(s)(s-1))}{s^{1+1/T}} ds$$
$endgroup$
- Do you know the Cauchy integral theorem ? $$int_{1/2 -iinfty}^{1/2 + iinfty} frac{log(s-1)}{s^2} ds= lim_{ato 0}int_{C_a} frac{log(s-1)}{s^2} ds - int_{L_a} frac{log(s-1)}{s^2} ds$$
where $C_a$ is a closed-contour $1/2-iinfty to 1/2-ia to 1+a-ia to 1+a+iato 1/2+ia to 1/2+iinfty to infty +iinfty to infty-iinfty to 1/2-iinfty$ and $L_a$ is the portion $1/2-ia to 1+a-ia to 1+a+iato 1/2+ia$.
Since $frac{log(s-1)}{s^2}$ is analytic inside $S_a$ and decreases in $O(s^{-1-epsilon})$ then $int_{C_a} frac{log(s-1)}{s^2} ds = 0$ and since $log(s-1) mapsto log(s-1)+2ipi$ when rotating counterclockwise around $s-1$ then
$$lim_{ato 0}int_{L_a} frac{log(s-1)}{s^2} ds= int_1^{1/2} frac{2ipi}{s^2}ds$$
For $F$ analytic decreasing in $O(s^{-1-epsilon})$, assuming the implied branch of $log (zeta(s)(s-1))$ is $O(s^{c}), c < epsilon$ the same argument (with a contour excluding each non-trivial zero) gives
$$lim_{T to infty}int_{1/2 -iT}^{1/2 + iT} log(zeta(s)(s-1))F(s) ds = lim_{T to infty}sum_{rho = sigma+it, sigma > 1/2, |t| < T} int_{1/2+it}^{sigma+it} 2i pi F(s)ds$$
In your question, what branch of $log (zeta(s)(s-1))$ are you considering ?
Look at $$lim_{T to infty}int_{1/2 -iT}^{1/2 + iT} frac{log(zeta(s)(s-1))}{s^{1+1/T}} ds$$
edited Dec 3 '18 at 22:47
answered Dec 3 '18 at 22:37
reunsreuns
19.9k21148
19.9k21148
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024610%2fa-line-integral-involving-zetas%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown