Showing that the Riemann invariant $frac{1}{2} (u^2+v^2) + int frac{c(p)^2}{p} dp $ is conserved along the...
$begingroup$
I need to show that the Riemann invariant $R = frac{1}{2} (u^2+v^2) + int frac{c(p)^2}{p} dp $ is conserved along the characteristic $dy/dx = v/u$. My system of equations are:
begin{aligned}
(pu)_x + (pv)_y &= 0 \
p(uu_x + vu_y) + c(p)^2p_x &= 0 \
p(uv_x +vv_y)+c(p)^2p_y &= 0
end{aligned}
The system is hyperbolic if $u^2 + v^2 > c^2$ where $c=c(p)$ (cf. this post). The left eigenvector corresponding to the eigenvalue $lambda = dy/dx = v/u$ is $(0,1,v/u)$. To find the Riemann invariant I do:
$$
begin{pmatrix}
0 & 1 & v/u
end{pmatrix}
begin{pmatrix}
u & p & 0 \
c^2 & pu & 0 \
0 & 0 & pu
end{pmatrix}
frac{d}{dx}begin{pmatrix} p \ u \ vend{pmatrix} = begin{pmatrix}
0 & 0 & 0
end{pmatrix}
$$
which gives me
$$
begin{pmatrix}
c^2 & pu & pv
end{pmatrix}
frac{d}{dx}begin{pmatrix} p \ u \ vend{pmatrix}= begin{pmatrix}
0 & 0 & 0
end{pmatrix}
$$
I am stuck on the final part as to how this implies that $frac{d}{dx}[R] =0$. I am struggling to see how $frac{d}{dx} int frac{c^2(p)}{p}dp = frac{c^2(p) {dp}/{dx}}{p}$ which would make $frac{d}{dx}[R] =0$.
pde systems-of-equations hyperbolic-equations
$endgroup$
add a comment |
$begingroup$
I need to show that the Riemann invariant $R = frac{1}{2} (u^2+v^2) + int frac{c(p)^2}{p} dp $ is conserved along the characteristic $dy/dx = v/u$. My system of equations are:
begin{aligned}
(pu)_x + (pv)_y &= 0 \
p(uu_x + vu_y) + c(p)^2p_x &= 0 \
p(uv_x +vv_y)+c(p)^2p_y &= 0
end{aligned}
The system is hyperbolic if $u^2 + v^2 > c^2$ where $c=c(p)$ (cf. this post). The left eigenvector corresponding to the eigenvalue $lambda = dy/dx = v/u$ is $(0,1,v/u)$. To find the Riemann invariant I do:
$$
begin{pmatrix}
0 & 1 & v/u
end{pmatrix}
begin{pmatrix}
u & p & 0 \
c^2 & pu & 0 \
0 & 0 & pu
end{pmatrix}
frac{d}{dx}begin{pmatrix} p \ u \ vend{pmatrix} = begin{pmatrix}
0 & 0 & 0
end{pmatrix}
$$
which gives me
$$
begin{pmatrix}
c^2 & pu & pv
end{pmatrix}
frac{d}{dx}begin{pmatrix} p \ u \ vend{pmatrix}= begin{pmatrix}
0 & 0 & 0
end{pmatrix}
$$
I am stuck on the final part as to how this implies that $frac{d}{dx}[R] =0$. I am struggling to see how $frac{d}{dx} int frac{c^2(p)}{p}dp = frac{c^2(p) {dp}/{dx}}{p}$ which would make $frac{d}{dx}[R] =0$.
pde systems-of-equations hyperbolic-equations
$endgroup$
add a comment |
$begingroup$
I need to show that the Riemann invariant $R = frac{1}{2} (u^2+v^2) + int frac{c(p)^2}{p} dp $ is conserved along the characteristic $dy/dx = v/u$. My system of equations are:
begin{aligned}
(pu)_x + (pv)_y &= 0 \
p(uu_x + vu_y) + c(p)^2p_x &= 0 \
p(uv_x +vv_y)+c(p)^2p_y &= 0
end{aligned}
The system is hyperbolic if $u^2 + v^2 > c^2$ where $c=c(p)$ (cf. this post). The left eigenvector corresponding to the eigenvalue $lambda = dy/dx = v/u$ is $(0,1,v/u)$. To find the Riemann invariant I do:
$$
begin{pmatrix}
0 & 1 & v/u
end{pmatrix}
begin{pmatrix}
u & p & 0 \
c^2 & pu & 0 \
0 & 0 & pu
end{pmatrix}
frac{d}{dx}begin{pmatrix} p \ u \ vend{pmatrix} = begin{pmatrix}
0 & 0 & 0
end{pmatrix}
$$
which gives me
$$
begin{pmatrix}
c^2 & pu & pv
end{pmatrix}
frac{d}{dx}begin{pmatrix} p \ u \ vend{pmatrix}= begin{pmatrix}
0 & 0 & 0
end{pmatrix}
$$
I am stuck on the final part as to how this implies that $frac{d}{dx}[R] =0$. I am struggling to see how $frac{d}{dx} int frac{c^2(p)}{p}dp = frac{c^2(p) {dp}/{dx}}{p}$ which would make $frac{d}{dx}[R] =0$.
pde systems-of-equations hyperbolic-equations
$endgroup$
I need to show that the Riemann invariant $R = frac{1}{2} (u^2+v^2) + int frac{c(p)^2}{p} dp $ is conserved along the characteristic $dy/dx = v/u$. My system of equations are:
begin{aligned}
(pu)_x + (pv)_y &= 0 \
p(uu_x + vu_y) + c(p)^2p_x &= 0 \
p(uv_x +vv_y)+c(p)^2p_y &= 0
end{aligned}
The system is hyperbolic if $u^2 + v^2 > c^2$ where $c=c(p)$ (cf. this post). The left eigenvector corresponding to the eigenvalue $lambda = dy/dx = v/u$ is $(0,1,v/u)$. To find the Riemann invariant I do:
$$
begin{pmatrix}
0 & 1 & v/u
end{pmatrix}
begin{pmatrix}
u & p & 0 \
c^2 & pu & 0 \
0 & 0 & pu
end{pmatrix}
frac{d}{dx}begin{pmatrix} p \ u \ vend{pmatrix} = begin{pmatrix}
0 & 0 & 0
end{pmatrix}
$$
which gives me
$$
begin{pmatrix}
c^2 & pu & pv
end{pmatrix}
frac{d}{dx}begin{pmatrix} p \ u \ vend{pmatrix}= begin{pmatrix}
0 & 0 & 0
end{pmatrix}
$$
I am stuck on the final part as to how this implies that $frac{d}{dx}[R] =0$. I am struggling to see how $frac{d}{dx} int frac{c^2(p)}{p}dp = frac{c^2(p) {dp}/{dx}}{p}$ which would make $frac{d}{dx}[R] =0$.
pde systems-of-equations hyperbolic-equations
pde systems-of-equations hyperbolic-equations
edited Dec 14 '18 at 15:22
Harry49
7,49431341
7,49431341
asked Dec 13 '18 at 13:56
pablo_mathscobarpablo_mathscobar
996
996
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038028%2fshowing-that-the-riemann-invariant-frac12-u2v2-int-fraccp2p%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038028%2fshowing-that-the-riemann-invariant-frac12-u2v2-int-fraccp2p%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown