Showing that the Riemann invariant $frac{1}{2} (u^2+v^2) + int frac{c(p)^2}{p} dp $ is conserved along the...












1












$begingroup$


I need to show that the Riemann invariant $R = frac{1}{2} (u^2+v^2) + int frac{c(p)^2}{p} dp $ is conserved along the characteristic $dy/dx = v/u$. My system of equations are:
begin{aligned}
(pu)_x + (pv)_y &= 0 \
p(uu_x + vu_y) + c(p)^2p_x &= 0 \
p(uv_x +vv_y)+c(p)^2p_y &= 0
end{aligned}



The system is hyperbolic if $u^2 + v^2 > c^2$ where $c=c(p)$ (cf. this post). The left eigenvector corresponding to the eigenvalue $lambda = dy/dx = v/u$ is $(0,1,v/u)$. To find the Riemann invariant I do:
$$
begin{pmatrix}
0 & 1 & v/u
end{pmatrix}
begin{pmatrix}
u & p & 0 \
c^2 & pu & 0 \
0 & 0 & pu
end{pmatrix}
frac{d}{dx}begin{pmatrix} p \ u \ vend{pmatrix} = begin{pmatrix}
0 & 0 & 0
end{pmatrix}
$$

which gives me
$$
begin{pmatrix}
c^2 & pu & pv
end{pmatrix}
frac{d}{dx}begin{pmatrix} p \ u \ vend{pmatrix}= begin{pmatrix}
0 & 0 & 0
end{pmatrix}
$$

I am stuck on the final part as to how this implies that $frac{d}{dx}[R] =0$. I am struggling to see how $frac{d}{dx} int frac{c^2(p)}{p}dp = frac{c^2(p) {dp}/{dx}}{p}$ which would make $frac{d}{dx}[R] =0$.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    I need to show that the Riemann invariant $R = frac{1}{2} (u^2+v^2) + int frac{c(p)^2}{p} dp $ is conserved along the characteristic $dy/dx = v/u$. My system of equations are:
    begin{aligned}
    (pu)_x + (pv)_y &= 0 \
    p(uu_x + vu_y) + c(p)^2p_x &= 0 \
    p(uv_x +vv_y)+c(p)^2p_y &= 0
    end{aligned}



    The system is hyperbolic if $u^2 + v^2 > c^2$ where $c=c(p)$ (cf. this post). The left eigenvector corresponding to the eigenvalue $lambda = dy/dx = v/u$ is $(0,1,v/u)$. To find the Riemann invariant I do:
    $$
    begin{pmatrix}
    0 & 1 & v/u
    end{pmatrix}
    begin{pmatrix}
    u & p & 0 \
    c^2 & pu & 0 \
    0 & 0 & pu
    end{pmatrix}
    frac{d}{dx}begin{pmatrix} p \ u \ vend{pmatrix} = begin{pmatrix}
    0 & 0 & 0
    end{pmatrix}
    $$

    which gives me
    $$
    begin{pmatrix}
    c^2 & pu & pv
    end{pmatrix}
    frac{d}{dx}begin{pmatrix} p \ u \ vend{pmatrix}= begin{pmatrix}
    0 & 0 & 0
    end{pmatrix}
    $$

    I am stuck on the final part as to how this implies that $frac{d}{dx}[R] =0$. I am struggling to see how $frac{d}{dx} int frac{c^2(p)}{p}dp = frac{c^2(p) {dp}/{dx}}{p}$ which would make $frac{d}{dx}[R] =0$.










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      I need to show that the Riemann invariant $R = frac{1}{2} (u^2+v^2) + int frac{c(p)^2}{p} dp $ is conserved along the characteristic $dy/dx = v/u$. My system of equations are:
      begin{aligned}
      (pu)_x + (pv)_y &= 0 \
      p(uu_x + vu_y) + c(p)^2p_x &= 0 \
      p(uv_x +vv_y)+c(p)^2p_y &= 0
      end{aligned}



      The system is hyperbolic if $u^2 + v^2 > c^2$ where $c=c(p)$ (cf. this post). The left eigenvector corresponding to the eigenvalue $lambda = dy/dx = v/u$ is $(0,1,v/u)$. To find the Riemann invariant I do:
      $$
      begin{pmatrix}
      0 & 1 & v/u
      end{pmatrix}
      begin{pmatrix}
      u & p & 0 \
      c^2 & pu & 0 \
      0 & 0 & pu
      end{pmatrix}
      frac{d}{dx}begin{pmatrix} p \ u \ vend{pmatrix} = begin{pmatrix}
      0 & 0 & 0
      end{pmatrix}
      $$

      which gives me
      $$
      begin{pmatrix}
      c^2 & pu & pv
      end{pmatrix}
      frac{d}{dx}begin{pmatrix} p \ u \ vend{pmatrix}= begin{pmatrix}
      0 & 0 & 0
      end{pmatrix}
      $$

      I am stuck on the final part as to how this implies that $frac{d}{dx}[R] =0$. I am struggling to see how $frac{d}{dx} int frac{c^2(p)}{p}dp = frac{c^2(p) {dp}/{dx}}{p}$ which would make $frac{d}{dx}[R] =0$.










      share|cite|improve this question











      $endgroup$




      I need to show that the Riemann invariant $R = frac{1}{2} (u^2+v^2) + int frac{c(p)^2}{p} dp $ is conserved along the characteristic $dy/dx = v/u$. My system of equations are:
      begin{aligned}
      (pu)_x + (pv)_y &= 0 \
      p(uu_x + vu_y) + c(p)^2p_x &= 0 \
      p(uv_x +vv_y)+c(p)^2p_y &= 0
      end{aligned}



      The system is hyperbolic if $u^2 + v^2 > c^2$ where $c=c(p)$ (cf. this post). The left eigenvector corresponding to the eigenvalue $lambda = dy/dx = v/u$ is $(0,1,v/u)$. To find the Riemann invariant I do:
      $$
      begin{pmatrix}
      0 & 1 & v/u
      end{pmatrix}
      begin{pmatrix}
      u & p & 0 \
      c^2 & pu & 0 \
      0 & 0 & pu
      end{pmatrix}
      frac{d}{dx}begin{pmatrix} p \ u \ vend{pmatrix} = begin{pmatrix}
      0 & 0 & 0
      end{pmatrix}
      $$

      which gives me
      $$
      begin{pmatrix}
      c^2 & pu & pv
      end{pmatrix}
      frac{d}{dx}begin{pmatrix} p \ u \ vend{pmatrix}= begin{pmatrix}
      0 & 0 & 0
      end{pmatrix}
      $$

      I am stuck on the final part as to how this implies that $frac{d}{dx}[R] =0$. I am struggling to see how $frac{d}{dx} int frac{c^2(p)}{p}dp = frac{c^2(p) {dp}/{dx}}{p}$ which would make $frac{d}{dx}[R] =0$.







      pde systems-of-equations hyperbolic-equations






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 14 '18 at 15:22









      Harry49

      7,49431341




      7,49431341










      asked Dec 13 '18 at 13:56









      pablo_mathscobarpablo_mathscobar

      996




      996






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038028%2fshowing-that-the-riemann-invariant-frac12-u2v2-int-fraccp2p%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038028%2fshowing-that-the-riemann-invariant-frac12-u2v2-int-fraccp2p%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Plaza Victoria

          Puebla de Zaragoza

          Musa