Find number of terms in arithmetic progression












0












$begingroup$


In a arithmetic progression sum of first four terms sum :
$$a_1+a_2+a_3+a_4=124$$



and sum of last four terms :
$$a_n+a_{n-1}+a_{n-2}+a_{n-3}=156$$
and sum of arithmetic progression is :
$$S_n=350$$



$$n=?$$



How to find $n$? I tried using arithmetic progression sum formulas but getting negative or fractional numbers.










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    In a arithmetic progression sum of first four terms sum :
    $$a_1+a_2+a_3+a_4=124$$



    and sum of last four terms :
    $$a_n+a_{n-1}+a_{n-2}+a_{n-3}=156$$
    and sum of arithmetic progression is :
    $$S_n=350$$



    $$n=?$$



    How to find $n$? I tried using arithmetic progression sum formulas but getting negative or fractional numbers.










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      In a arithmetic progression sum of first four terms sum :
      $$a_1+a_2+a_3+a_4=124$$



      and sum of last four terms :
      $$a_n+a_{n-1}+a_{n-2}+a_{n-3}=156$$
      and sum of arithmetic progression is :
      $$S_n=350$$



      $$n=?$$



      How to find $n$? I tried using arithmetic progression sum formulas but getting negative or fractional numbers.










      share|cite|improve this question











      $endgroup$




      In a arithmetic progression sum of first four terms sum :
      $$a_1+a_2+a_3+a_4=124$$



      and sum of last four terms :
      $$a_n+a_{n-1}+a_{n-2}+a_{n-3}=156$$
      and sum of arithmetic progression is :
      $$S_n=350$$



      $$n=?$$



      How to find $n$? I tried using arithmetic progression sum formulas but getting negative or fractional numbers.







      sequences-and-series summation arithmetic-progressions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 14 '18 at 16:19









      Lord Shark the Unknown

      105k1160133




      105k1160133










      asked Dec 14 '18 at 16:15









      Serif YaohimSerif Yaohim

      32




      32






















          4 Answers
          4






          active

          oldest

          votes


















          1












          $begingroup$

          One has $a_1+a_2+a_3+a_4+a_{n-3}+a_{n-2}+a_{n-1}+a_n=280$. The mean of those
          eight terms is $35$, so the mean of $a_1,ldots,a_n$ is also $35$. The sum
          of those $n$ terms is $n$ times their mean, and is $350$. So now you can read
          off $n$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            hohohoh man thank you a lot. God bless you
            $endgroup$
            – Serif Yaohim
            Dec 14 '18 at 16:25



















          1












          $begingroup$

          Use the formula $$a_n=a_1+(n-1)d$$ where $$a_{n+1}-a_{n}=d$$






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            $$350=dfrac{n(a_1+a_n)}2$$



            Now $a_1+a_n=a_2+a_{n-1}=cdots=dfrac{124+156}4$






            share|cite|improve this answer











            $endgroup$





















              0












              $begingroup$

              Use standard formula of A.P.
              which is



              $a_n = a + (n-1)d$



              and a simple difference formula



              $a_n - a_{n-1} = d$






              share|cite|improve this answer











              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039559%2ffind-number-of-terms-in-arithmetic-progression%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                4 Answers
                4






                active

                oldest

                votes








                4 Answers
                4






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                1












                $begingroup$

                One has $a_1+a_2+a_3+a_4+a_{n-3}+a_{n-2}+a_{n-1}+a_n=280$. The mean of those
                eight terms is $35$, so the mean of $a_1,ldots,a_n$ is also $35$. The sum
                of those $n$ terms is $n$ times their mean, and is $350$. So now you can read
                off $n$.






                share|cite|improve this answer









                $endgroup$













                • $begingroup$
                  hohohoh man thank you a lot. God bless you
                  $endgroup$
                  – Serif Yaohim
                  Dec 14 '18 at 16:25
















                1












                $begingroup$

                One has $a_1+a_2+a_3+a_4+a_{n-3}+a_{n-2}+a_{n-1}+a_n=280$. The mean of those
                eight terms is $35$, so the mean of $a_1,ldots,a_n$ is also $35$. The sum
                of those $n$ terms is $n$ times their mean, and is $350$. So now you can read
                off $n$.






                share|cite|improve this answer









                $endgroup$













                • $begingroup$
                  hohohoh man thank you a lot. God bless you
                  $endgroup$
                  – Serif Yaohim
                  Dec 14 '18 at 16:25














                1












                1








                1





                $begingroup$

                One has $a_1+a_2+a_3+a_4+a_{n-3}+a_{n-2}+a_{n-1}+a_n=280$. The mean of those
                eight terms is $35$, so the mean of $a_1,ldots,a_n$ is also $35$. The sum
                of those $n$ terms is $n$ times their mean, and is $350$. So now you can read
                off $n$.






                share|cite|improve this answer









                $endgroup$



                One has $a_1+a_2+a_3+a_4+a_{n-3}+a_{n-2}+a_{n-1}+a_n=280$. The mean of those
                eight terms is $35$, so the mean of $a_1,ldots,a_n$ is also $35$. The sum
                of those $n$ terms is $n$ times their mean, and is $350$. So now you can read
                off $n$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 14 '18 at 16:23









                Lord Shark the UnknownLord Shark the Unknown

                105k1160133




                105k1160133












                • $begingroup$
                  hohohoh man thank you a lot. God bless you
                  $endgroup$
                  – Serif Yaohim
                  Dec 14 '18 at 16:25


















                • $begingroup$
                  hohohoh man thank you a lot. God bless you
                  $endgroup$
                  – Serif Yaohim
                  Dec 14 '18 at 16:25
















                $begingroup$
                hohohoh man thank you a lot. God bless you
                $endgroup$
                – Serif Yaohim
                Dec 14 '18 at 16:25




                $begingroup$
                hohohoh man thank you a lot. God bless you
                $endgroup$
                – Serif Yaohim
                Dec 14 '18 at 16:25











                1












                $begingroup$

                Use the formula $$a_n=a_1+(n-1)d$$ where $$a_{n+1}-a_{n}=d$$






                share|cite|improve this answer









                $endgroup$


















                  1












                  $begingroup$

                  Use the formula $$a_n=a_1+(n-1)d$$ where $$a_{n+1}-a_{n}=d$$






                  share|cite|improve this answer









                  $endgroup$
















                    1












                    1








                    1





                    $begingroup$

                    Use the formula $$a_n=a_1+(n-1)d$$ where $$a_{n+1}-a_{n}=d$$






                    share|cite|improve this answer









                    $endgroup$



                    Use the formula $$a_n=a_1+(n-1)d$$ where $$a_{n+1}-a_{n}=d$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Dec 14 '18 at 16:17









                    Dr. Sonnhard GraubnerDr. Sonnhard Graubner

                    76.8k42866




                    76.8k42866























                        0












                        $begingroup$

                        $$350=dfrac{n(a_1+a_n)}2$$



                        Now $a_1+a_n=a_2+a_{n-1}=cdots=dfrac{124+156}4$






                        share|cite|improve this answer











                        $endgroup$


















                          0












                          $begingroup$

                          $$350=dfrac{n(a_1+a_n)}2$$



                          Now $a_1+a_n=a_2+a_{n-1}=cdots=dfrac{124+156}4$






                          share|cite|improve this answer











                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            $$350=dfrac{n(a_1+a_n)}2$$



                            Now $a_1+a_n=a_2+a_{n-1}=cdots=dfrac{124+156}4$






                            share|cite|improve this answer











                            $endgroup$



                            $$350=dfrac{n(a_1+a_n)}2$$



                            Now $a_1+a_n=a_2+a_{n-1}=cdots=dfrac{124+156}4$







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Dec 14 '18 at 16:54

























                            answered Dec 14 '18 at 16:28









                            lab bhattacharjeelab bhattacharjee

                            226k15157275




                            226k15157275























                                0












                                $begingroup$

                                Use standard formula of A.P.
                                which is



                                $a_n = a + (n-1)d$



                                and a simple difference formula



                                $a_n - a_{n-1} = d$






                                share|cite|improve this answer











                                $endgroup$


















                                  0












                                  $begingroup$

                                  Use standard formula of A.P.
                                  which is



                                  $a_n = a + (n-1)d$



                                  and a simple difference formula



                                  $a_n - a_{n-1} = d$






                                  share|cite|improve this answer











                                  $endgroup$
















                                    0












                                    0








                                    0





                                    $begingroup$

                                    Use standard formula of A.P.
                                    which is



                                    $a_n = a + (n-1)d$



                                    and a simple difference formula



                                    $a_n - a_{n-1} = d$






                                    share|cite|improve this answer











                                    $endgroup$



                                    Use standard formula of A.P.
                                    which is



                                    $a_n = a + (n-1)d$



                                    and a simple difference formula



                                    $a_n - a_{n-1} = d$







                                    share|cite|improve this answer














                                    share|cite|improve this answer



                                    share|cite|improve this answer








                                    edited Dec 18 '18 at 19:46









                                    Prakhar Nagpal

                                    752318




                                    752318










                                    answered Dec 18 '18 at 19:32







                                    user578581





































                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039559%2ffind-number-of-terms-in-arithmetic-progression%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Plaza Victoria

                                        Puebla de Zaragoza

                                        Musa